Inference Spiral of System Science

System Model
- Verification (better theory, more computation)

Real World
- Validation (better data, more computation)

Data Assimilation
- model formulation
- model simulation
- prediction

Reductionistic analysis
- constructionistic synthesis
Verification

• Model “does what’s it’s supposed to do” at a specified level of precision
 – Mathematics is correct
 – Physics is properly implemented

• Techniques
 – Comparisons with known (e.g., analytic) solutions
 – Cross-comparisons between different models
 – Consistency with observations (validation)

• Procedures need to be available on-demand throughout the modeling process
 – Difficult from a practical perspective
 – Facilitated by vertical integration of cyberinfrastructure
Validation

• Criteria for asserting model is credible representation of the real system, usable for forecasting behaviors (not that “model is true”)
 – Consistent with knowledge of the system (includes verification)
 – Not too sensitive to initial conditions or unknown forcings
 – Aleatory and epistemic uncertainties are properly characterized
 – Consistent with relevant observations

• Substantiation that a model is sufficiently accurate in predicting system behaviors
 – within its domain of applicability
 – consistent with its intended purposes

• Techniques
 – Testing against observations (surviving invalidation)
 – Competition among models
 – Validation of model components
 – Improvement by data assimilation (inversion)