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Abstract

The proliferation of seismic record repositories through the expansion of seismic
networks and high-performance computer simulations of earthquake scenarios, have
made available ground-motion databases rich enough to make possible data-driven
models of ground-motion synthesis that account for complex site effects. Data-driven
methods offer a novel approach to describing these processes by directly learning the
governing laws from sufficiently rich training data, while avoiding the use of simplified
assumptions that limit the realism of models developed with traditional statistical
tools. In this study, we demonstrate this new paradigm of learning the underlying
physics in a data-driven framework —and quantifying as such, the sources of ground
motion epistemic uncertainty, by developing a Fourier Neural Operator (FNO) which
modifies the outcrop ground motions from the SCEC BBP to account for the full
nonlinear response of the near-surface soil layers. FNO was trained on non-linear one-
dimensional wave propagation through smooth Bay Area velocity profiles using the site-
response software, PySeismoSoil. A key advantage of the neural operator architecture
in FNO compared to traditional neural networks, is its ability to learn the mapping
between continuous function spaces as opposed to finite-dimensional sets, rendering the
training and application of the model resolutions invariant (i.e., training can include
input signals of different sampling frequencies without loss of information or generation
of artifacts, while prediction can be performed on sampling frequencies independent
of training). Verification analyses through residual and goodness of fit evaluations
demonstrate that FNO can correctly estimate the nonlinear amplification for ground
motions and profiles not included in the training dataset in the 0.1 to 30z frequency
range. By appropriately conditioning data-driven algorithms, our work demonstrates
the potential of using these methods to learn increasingly complex physics and their
uncertainty over the entire frequency range of engineering interest, and to modulate on
demand time-histories appropriate for engineering design with high degree of realism.



1 Introduction

Modern advancements in computer processing power have enabled significant improvements
in physics-based, broadband ground motion simulations for seismic hazard mapping and
engineering applications. Our goal for developing an easy-to-use, data-driven nonlinear site
response module is to further improve the ability for ground motion models to accurately
represent the site-specific nonlinear response of materials in the shallow crust. We take
advantage of cutting edge machine learning architecture to develop a data-driven model
that can accurately capture the nonlinear response of weathered rock and sedimentary
soils, through which high frequencies propagate in the near surface.

Historically, researchers developed site amplification factors (also known as ground mo-
tion attenuation relations) by fitting a functional form equation to data through regression
analysis. In this project, we introduce a site response module that departs from the his-
torically used functional form representation in order to accurately and efficiently perform
nonlinear site response analysis. Like many site modules of ground motion models, our
model is designed to apply on a rock outcrop ground motion the appropriate amplification
according to site-specific shear wave velocity properties, as to produce the corresponding
ground surface site response. However, by taking advantage of the strengths of data-driven
models, our site response module is able to directly learn the nonlinear relationship be-
tween rock outcrop and surface response, parameterized by an entire input acceleration
time series and a multi-variable representation of shear wave velocity profile. Our model
is therefore able to avoid the biases associated with predefining a functional form, and it
is also able to reduce the loss of information associated with a limited representation of
input motion intensity and velocity profile.

In the following sections, we give a primer on neural operator machine learning ar-
chitectures and our FNO achitecture in particular, followed by a description of the input
ground motions and velocity profiles used in the training, the nonlinear model used in the
analyses, the training and testing datasets, and a description of the model validation, fo-
cusing specifically on the goodness of fit performance as formulated by (Il) across multiple
metrics.

2 Neural Operators

The deep learning architecture used for site-FNO is the neural operator, which is a novel
paradigm well-suited for solving differential equations such as those governing 1D wave
propagation. This is because neural operators are designed to learn how to map between
two infinite dimensional function spaces, in comparison with traditional neural networks
that are limited to mapping between finite dimensional spaces.



2.1 site-FINO: A Data-Driven Method

With adequate time and computational resources, it is sufficient to provide a reference
ground motion and site characteristics to a numerical code, and directly compute the non-
linear site response to get the surface ground motion. However, there are many situations
where a quick and accurate estimate of the site response is desired — such as uncertainty
quantification, etc. In such situations, we want to be able to provide similar inputs (ground
motion, site characteristics such as Vs) and get out a faster and less computationally ex-
pensive estimate of the site response.

For example, the Statewide California Earthquake Center (SCEC) Broadband Platform
(BBP) has two implemented modules for computing the site response on generated ground
motions: the GP method and PySeismoSoil. These modules are designed to be quick and
easy to use.

In this work we present site-FNO, a data-driven Fourier neural operator model, which
has been trained to produce a site-specific surface ground motion time series given a refer-
ence site time series and easily acquirable information on the local soil profile of interest. It
is a simplified tool for accurate approximation of nonlinear site response which can produce
outputs at speeds of over three orders of magnitude faster than traditional solvers over a
broad frequency range (0.1 - 20 Hz). We call site-FNO a data-driven method, because
only the data controls how the neural operator model relates input variables to the output.
This can be contrasted with traditional regression methods that are more prone to bias,
where a functional form is predetermined and regression methods are used to fit it to data
characteristics.

3 Training Datasets

3.1 Nonlinear Site Response

We generated the dataset of nonlinear simulations that would be used to train and test
the neural operator model using the open-source, 1D seismic site response analysis code,
PySeismoSoil (? ). For nonlinear analysis, PySeismoSoil computes the solution in the time
domain using the finite difference method (FDM). There are three major modeling as-
pects for nonlinear simulation that PySeismoSoil improves on. First, PySeismoSoil models
small-strain damping using the memory-variable technique proposed by Liu and Archuleta
(2006), which more accurately simulates frequency-independent small-strain damping than
Rayleigh or Caughey damping. Second, Pyseismosoil models hysteresis behavior using the
model proposed by Li and Assimaki (2010), which produces narrower and more realistic
hysteresis loops than those produced using Masing rules. Finally, PySeismoSoil models
the stress-strain and damping behaviors of soil using the hybrid hyperbolic (HH) model
(2)), which can capture both small-strain and large-strain soil behaviors. PySeismoSoil was
developed over the past 15 years with partial support from SCEC.



3.2 SCEC BBP Ground Motions

The simulated ground motion time series used to generate the training and testing datasets
were generated using the Southern California Earthquake Center’s Broadband Platform
(SCEC BBP v17.3.0) using the Graves and Pitarka (2015) simulation module (BBP-
GP). The database was developed by (1)) in collaboration with BBP-GP developer Robert
Graves, and contains 113 events ranging from M 5.5 to 7.2 on strike-slip and from M 7.0
to 7.2 on reverse faults, which were recorded at stations on reference site conditions (Vs30
= 760 m/s) at rupture distances between 0 to 200 km. The marginal distribution of the
ground motion characteristics of the data is shown in Figure 1.

In this study, we take the N-S and E-W components of each record to be separate
time series, for a total of 11,000 ground motion time series that were extracted from the
(? ) database for use in training and testing the neural operator model. We computed
in PySeismoSoil the nonlinear site response for the 11,000 ground motions on each of the
33 velocity profiles produced in this study. The surface response was recorded for each
nonlinear simulation for a grand total of 363,000 input-output ground motion site response
samples.

3.3 Shear Wave Velocity Model

The velocity profiles were generated using the parameterized, region-specific near-surface
velocity model algorithm developed by (? [3)), which takes as input the Vg3p and a depth
vector, and produces a generic 1D velocity profile for use in wave propagation simulations.
The algorithm is based on the one originally proposed by (? ) for SCEC, but includes new
scaling relationships to augment the model’s predictive and extrapolation capabilities. For
the training dataset, we focused on eleven different Vg3¢ values in this study, evenly spaced
50 m/s apart between 250 m/s and 750 m/s to capture a wide range of shear wave velocity
profiles. Each Vggg value was used to generate three shear wave velocity profiles: an upper
and a lower bound, as well as median estimate. In total, 33 velocity profiles were produced
at a resolution of 1 meter up to a depth of 275 meters. The maximum shear wave velocity
for each profile was capped to 1000 m/s.

3.4 Nonlinear constitutive model: Hybrid-Hyperbolic

Within PySeismoSoil, we captured the nonlinear behavior of the soil using the Hybrid
Hyperbolic (HH) 1D soil constitutive model developed by (2)). The HH model is formulated
as composite of two hyperbolic models (aka KZ models): the modified hyperbolic model
(MKZ) proposed by (4)) for the low-to-medium strain range, and a flexible KZ model
(FKZ) in the high strain range. Because the HH model is designed to represent dynamic
soil behavior over a wide range of strains, it is able to accurately capture the shear strength
of soils in near-surface layers that have lower velocities without under-predicting the soil
stress. In addition, it only requires a 1D Vg profile to calibrate its parameters. The HH
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Figure 1: Caption

model was developed by the PI with SCEC funding over the last 15 years, and more
information can be found in (2)) and in papers and SCEC reports therein.

A schematic that depicts how the elements of soil profiles, rock outcrop ground motions
and nonlinear site response were integrated to formulate the training and testing datasets
is shown in Figure 3.
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Figure 3: Schematic representation of modular set of elements that we synthesized into the training
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Figure 2: Velocity profiles in training and test datasets.
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4 Model Training

The U-NO model trained in this study takes as input seven parameters, each represented
as a vector of length 10,000. This arises due to a restriction of Fourier neural operators
which requires all inputs to be of the same size for the Fourier decomposition. In addition,
we chose to normalize the time series by the peak ground acceleration in both the input
and the output for greater computational stability in light of the wide range of ground
motion amplitudes in the dataset, which span two orders of magnitude. The log of input
time series PGA and output time series PGA were thus included as parameters to be able
to recover the input-output amplification relation of the original site response analysis.

The first parameter contains the ground motion information as an acceleration time
series sampled at 100hz over a time domain of 100 seconds then normalized by peak ground
acceleration (PGA). The second parameter is a constant vector of the log of the peak ground
acceleration. The remaining five parameters contain a parameterized representation of the
velocity profile, the values of which come from the velocity model algorithm developed by
(3.

The output of the model is two vectors, the first of which represents the surface ac-
celeration time series normalized by output PGA, and the second of which is a constant
vector containing the log of the output PGA.

We trained the model using mini batch gradient descent, and the model parameters
were updated after each mini batch to minimize the L2 norm error between the U-NO
model output and the ”true” solution generated by nonlinear site response analysis in Py-
SeismoSoil. We split the dataset of 363,000 samples randomly, so that 80 percent (290,400
samples) were used for training and 20 percent (72,600 samples) for testing. The PGA
distributions of the training and testing datasets were checked to ensure that they were
reflective of each other and the original total dataset . The model was trained for 300
epochs on the Caltech Resnick High Performance Computing Cluster, which took about 25
hours to complete using one Nvidia P100 GPU. The histogram of the training and testing
dataset is shown in Figure 4 while the algorithm UNO schematic is shown in Figure 5.

5 Model Evaluation

We devised a series of tests to assess the performance of the trained FNO model using the
goodness-of-fit (GoF) scoring scheme from (2)), which scores the fit between a measured
waveform and a simulated waveform. Generally, the goal is to evaluate how well a model
can capture site effects to produce simulated waveforms which closely match measured
waveforms; in our case, the measured waveforms are the 1d nonlinear site response results
from PySeismoSoil, and the simulated waveforms are the outputs from the trained U-NO
model.

The GoF scheme rates a pair of acceleration time series according to nine different



Figure 4: Histogram depicting the training and hold-off dataset PGA distributions.
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metrics. Fach scoring metric has a range from -10 to 10, where 0 represents a perfect
match, negative values indicate underprediction by the model, and positive values indicate
overprediction by the model. We evaluated the model at fs=100hz on the 2,200 test samples
that the trained model had not seen; in addition, we augmented the testing dataset by
scaling the pga of the testing dataset to evaluate the model performance at higher strains,
considering the scarcity of high amplitude ground motions in the dataset compared to
low-middle amplitude ground motions. We finally evaluated the model on a completely
different ground motion dataset of recorded (NGA-W2) rather than simulated (BBP) time
series; where we assessed both the goodness of fit of the results for 100 Hz, the resolution
that the module was trained on, and for 200 Hz, a resolution higher than the module had
been trained on.

Results shown in Figure 7 demonstrate, via the histogram of gof density distributions,
that in all cases the module’s performance is optimal (median gof is equal to zero, regardless
of the strain intensity of the ground motion dataset) and the spread is never wider than +1.
Focusing on the testing dataset and NGA datasets in the strain range where the module
was tested (medium to high strain range) we see that the goodness of fit is invariant with
the strain amplitude (here depicted by means of its proxy, pgv/Vsso. The capacbility of
the module to extrapolate in higher strains and higher frequencies is purely the result of
the use of NO, that assumes a continuous function of the underlying PDE solution, and as
such it’s performance is invariant to the temporal and strain range extrapolation testing
data.

The ML module will be made available to the SCEC IT team for integration in the
BBP platform as an optional site module.
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Figure 6: Histogram depicting the testing dataset PGA distributions of the BBP dataset and the
NGA W2 dataset.
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Figure 7: GOF scores of the performance of the module comparing it to the amplification computed
by nonlinear site response using SeismoSoil.
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