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We developed a deep-learning-based seismic denoising algorithm to suppress the 
strong cultural noise in seismic recordings from urban environments. The algorithm is 
trained using a waveform data set that combines noise sources from the urban Long 
Beach dense array and high signal-to-noise ratio earthquake signals extracted from 
the rural San Jacinto dense array. We apply UrbanDenoiser to denoise the Long 
Beach dense array data and seismograms recorded by isolated stations from regional 
seismic network and find that seismic noise levels are strongly suppressed relative to 
seismic signals, so that the seismic signals can be recovered even from noisy seismic 
data with signal-to-noise ratio (SNR) around one. The seismic detection/location 
results based on denoised data preserve earthquake events and exclude large 
amplitude non-earthquake sources. We perform back-projection imaging on the 
denoised data, and do not find widespread earthquakes below 20 km, but observe 
seismicity distributed beneath the surface fault trace of Newport-Inglewood Fault. 

Network training 
We develop UrbanDenoiser by training a deep neural network with seismic noise 

from the Long Beach dataset and seismic signals from the San Jacinto dataset. The 
architecture of the neural network is based on that of the DeepDenoiser algorithm1. 
The dataset consists of 90-s windows of seismic waveforms for 80,000 noise samples 
and 33,751 signal samples. The signal and noise samples are randomly split into 
training and validation sets. We generate noisy waveforms at different SNR levels by 
combining the signal training set repeatedly with randomly selected noise samples 
from the noise training set, and randomly shifting the waveform in the window2. The 
input for the neural network is the 2D time-frequency representation of noisy 
waveforms determined by Short Time Fourier Transform. Both the real and imaginary 
parts are input into the neural network so that it is able to learn from the time and 
phase information. The prediction targets are two masks for recovered signal and 
noise respectively. We generate seismic waveforms for the validation set with the 
same procedure and apply them for fine-tuning the hyper-parameters of the network. 
We test the neural network with the additional seismic data from Long Beach seismic 
recordings. 

We extract noise samples from Long Beach data. These waveforms include 
various kinds of traffic sources (cars, airplanes, helicopters), vibroseis events and 



other unknown activities. We collect seismic recordings from all the receivers in the 
Long Beach Phase B deployment on Julian days 27 and 48, 2012, and select seismic 
noise samples from them, because there are fewer earthquakes during these two days 
in the Quake Template Matching (QTM) catalog3. We segment the data in 90-s-long 
time series and remove those containing earthquake signals either from known 
seismic events in the QTM catalog or as determined by the PhaseNet algorithm4.  

The signal samples are extracted from San Jacinto dataset, which were recorded 
by another dense array deployed on the active Clark branch of San Jacinto Fault from 
2014 May 7 to 2014 June 135. This deployment consists of ~ 1,108 geophones that 
collected high-quality seismic signals from small to medium magnitude local 
earthquakes. The two deployments used the same sensors with the same instrumental 
response. We select the labeled signals with a strict condition. We run PhaseNet on 
the continuous data, and the candidate earthquake signal waveforms are selected 
based on their coherence across the seismic network. We select only those signal 
windows with SNR > 12 (defined as the root-mean-square ratio of the seismic energy 
after and before the first arrival) as the labeled signals. We also include 30,000 seismic 
signal samples from the North California Seismic Network in the training dataset to 
increase the predictive power of deep neural network and reduce overfitting. 

 
Figure 1: Denoising results on noisy signal windows by DeepDenoiser and 
UrbanDenoiser. “Noisy signals” in (a1~a4, b1~b4, c1~c4) (i) record a local M 2.1 
earthquake. UrbanDenoiser better recovers seismic signals from noisy waveforms 
compared with DeepDenoiser. 

UrbanDenoiser vs DeepDenoiser 
We compare the performance of the newly trained UrbanDenoiser and the original 

DeepDenoiser to the Long Beach data that were not included in the training data set. 
Figure 1 shows denoising results on seismic recordings for a local M 2.1 earthquake. 
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Because it is trained on the San Jacinto dataset collected from a similar tectonic setting 
to the Newport-Inglewood fault zone by the same type of receivers as the Long Beach 
array, UrbanDenoiser better captures the characteristics of the seismic signals from 
the Long Beach data and separates them from seismic noise than does the original 
DeepDenoiser. 

Earthquake Detection with Denoised Long Beach Dense Array Data 

We perform BP for a 4.4 km (X) × 6 km (Y) × 25 km (Z) 3D imaging volume with a 
grid spacing of 200 m in each dimension. The geographic boundary of the imaging 
volume is shown as the red dashed rectangle in Fig. 1b. We perform BP as described 
above. We segment the shifted-and-stacked time series for each grid point into three-
second time windows, and the maximum value within each time window is assigned 
as the BP value of this grid point. We thus obtain a 3D imaging volume for each three-
second time window. If the maximum BP value through the whole space within a time 
window exceeds the detection threshold, we mark the corresponding grid point as a 
detection. 

We apply UrbanDenoiser to seven-days of seismic data (Julian days 61- 67), and 
perform BP on the denoised continuous data within a 4.4ⅹ6.0ⅹ25.0 km3 imaging 
volume, to detect and locate the most likely seismic sources (Methods). Robust 
seismic denoising allows us to work on the entire day’s data, The denoising effectively 
removes the daytime/nighttime variation. 

Application of UrbanDenoiser to Seismograms from Regional Stations  

An earthquake sequence struck urban La Habra with a mainshock magnitude of 
5.1 at 4:09:41 UTC on Mar. 29, 2014. We choose the five stations from SCSN nearest 
to the sequence, and apply UrbanDenoiser to the seismograms. We confirm an 
earthquake when the detected phases can be associated on two or more stations, and 
by doing this we find a total of 488 events during the 10 hours between 3:00 ~ 12:00. 

Fig. 2 shows 40-minute seismograms (03:20 – 04:00 UTC, Mar. 29, 2014, vertical 
component only) from the five stations. This is a period between the M 3.57 foreshock 
and M 5.1 main shock, and is a relatively quieter window compared with those 
following the main shock. The only event in the QTM catalog during this time is a M 
0.67 earthquake at 3:40:59, which is also detected in the denoised waveforms shown 
in Fig. a4-II ~ d4-II. Comparing Fig. a4-II ~ d4-II with the raw data in Fig. a3-II ~ d3-II, we find 
substantial enhancement of the SNR in the denoised version. With the denoised data, 
we find a total of nine events during this 40-minute period Fig. a4-I ~ d4-I, Fig. a4-III ~ d4-

III show two examples (not included in QTM catalog) compared with the raw data in 
Fig. a3-I ~ d3-I, Fig. a3-III ~ d3-III. This demonstrates that UrbanDenoiser can facilitate the 
detection of more small events in an urban setting. 



 
Figure 2: Application of UrbanDenoiser to the 40-minute seismograms (3:20 – 4:00 
UTC, Mar. 29, 2014, vertical component) from the five stations of SCSN (Station 
CI.BRE, CI.FUL, CI.OLI, CI.RHC2 and CI.WLT): (a1-e1) Raw seismograms; (a2-e2) 
Denoised seismograms; (a4-e4) Zoomed view of the denoised potential earthquake 
waveforms compared with the raw waveforms (a3-e3). 
 

Fig. 3 compares the SNR of the denoised signals vs. non-denoised signals from 
Station CI.FUL for 102 events with -0.16 < M < 5.1. The SNR of the non-denoised data 
decreases rapidly with decreasing magnitude (black dots). UrbanDenoiser enhances 
the SNR for each event (red dots). Although the SNR of the denoised data decreases 
when the magnitude decreases, the SNR is consistently higher, and the trend is slower. 
On average, UrbanDenoiser enhances the SNR by about ten-fold, with the most 
dramatic improvement around M 1.5 - 3.8 (SNR: 2 - 100). This compares with a 
recently reported increase of ~5 dB in SNR reported for more denoising applied to 
more typical seismological settings8.  
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Figure 3: SNR of the denoised signals vs non-denoised signals from Station CI.FUL 
for 102 events varying between M -0.16 to M 5.1. 

Discussion 
UrbanDenoiser can effectively suppress the high-level noises, though false 

positives and false negatives in denoised data should still be expected to occur and 
need to be assessed. The influence of false positives in denoised data can be 
effectively suppressed by using the dense array data for detection. False negatives 
occur when the seismic signal is too weak or when the target seismic phases and the 
training signal samples are not similar to the earthquake waveforms. 

For the most part, we do not have dense array deployments like Long Beach 
phase A and B available to generate a more complete earthquake catalog. The 
implementation of seismic monitoring relies on the isolated seismic instrument from 
the regional seismic network. The conventional STA/LTA method can result in many 
false detections for phase identification such that it degrades the performance of 
phase association and event location. UrbanDenoiser can remove most of the noise 
bursts from the raw data and significantly increase the SNR for the seismic recordings 
in a single trace. This benefits the subsequent earthquake detection processing, and 
should enhance the effectiveness of seismic monitoring by regional seismic networks 
in urban areas. 
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