
Search, Map, and Analyze the 
Dynamics of Fragile Geologic Features 
Project objectives 
Earthquake geology provides constraints on ground rupture and ground motions from Southern 
California’s faults over sufficiently long time scales that most available earthquake sources have been 
activated. These data are complementary to geodetic and seismological records. However, the epistemic 
uncertainties from earthquake geology data remain high. This is certainly true for FGFs applied to seismic 
hazards. The SCEC Earthquake Geology research strategies include “Analysis and dating of precariously 
balanced rocks and other fragile geologic features to evaluate ground motion hazard and inform seismic 
hazard methodologies.” Priorities include developing data sets of fragile geologic features and refining 
fragility analysis. At the 2019 SCEC annual meeting, renewed interest in FGFs was evident in the 
Workshop on Evaluation of Seismic Hazard Models with Fragile Geologic Features 
(https://www.scec.org/workshops/2019/FGF). Key issues included single- vs. multi-PBR fragility models 
and FGF evaluation in a diversity of geomorphic settings. Our proposed work was inspired by these 
discussions.  
 
We developed a pipeline for identifying and then mapping PBRs at close range. We also 
studied the feasibility of dynamical studies in a physics engine. By combining methodology for 
mapping PBRs for stability trait characterization, and exploring simplified PBR dynamics 
through simulation studies, we advanced a comprehensive understanding of PBR sites and 
geologic factors affecting them, decreasing epistemic uncertainty for their seismic hazard 
contributions.  
 
Robotic mapping is useful in scientific applications that involve surveying unstructured environments. This 
paper presents a target-oriented mapping system for sparsely distributed geologic surface features, such 
as precariously balanced rocks (PBRs), whose geometric fragility parameters can provide valuable 
information on earthquake shaking history and landscape development for a region. With this 
geomorphology problem as the test domain, we demonstrate a pipeline for detecting, localizing, and 
precisely mapping fragile geologic features distributed on a landscape. To do so, we first carry out a 
lawn-mower search pattern in the survey region from a high elevation using an Unpiloted Aerial Vehicle 
(UAV). Once a potential PBR target is detected by a deep neural network, we track the bounding box in 
the image frames using a real-time tracking algorithm. The location and occupancy of the target in world 
coordinates are estimated using a sampling-based filtering algorithm, where a set of 3D points are 
re-sampled after weighting by the tracked bounding boxes from different camera perspectives. The 
converged 3D points provide a prior on 3D bounding shape of a target, which is used for UAV path 
planning to closely and completely map the target with Simultaneous Localization and Mapping (SLAM). 
After target mapping, the UAV resumes the lawn-mower search pattern to find the next target. We 
introduce techniques to make the target mapping robust to false positive and missing detection from the 
neural network. Our target-oriented mapping system has the advantages of reducing map storage and 
emphasizing complete visible surface features on specified targets. 
 
 



Methodology 

Details of our methodology has been submitted to the IEEE Robotics and Automation Letters.  
 
 

Fig. 1: (Top left) A precariously balanced rock (PBR) in Granite Dells, Arizona. (Bottom left) 
Reconstructed world in Gazebo. (Right) Resulting mapped PBR from the reconstructed scene. 
 
The proposed target-oriented mapping system is composed of a perception subsystem (Fig. 2) and a 
motion subsystem (Fig. 3). We start by carrying out a lawn-mower search pattern in the survey region 
from a high elevation using a UAV. Once a potential PBR target is detected by a deep neural network, we 
track the target bounding box in image coordinates using a bounding box tracking algorithm. We generate 
3D points from the tracked bounding box and resample them with our sampling-based filtering algorithm. 
When the 3D points are assessed to be converging, the UAV employs a circular motion at the same 
search elevation to keep filtering 3D points. A bounding cylinder (b-cylinder) is then constructed from the 
converged 3D points for UAV path planning to closely and completely map the target with SLAM. After 
target mapping, the UAV resumes the lawnmower search pattern to find the next target. 
 
The perception subsystem workflow is shown in Fig. 2. We deploy two tracking modules: one for 
bounding boxes and one for 3D points. The bounding box tracking module subscribes to detection 
messages from a neural network and publishes tracked bounding boxes to the 3D points tracking module. 
The essence of the 3D points tracking module is a sampling-based filtering algorithm where a set of 3D 
points are re-sampled after weighting by the tracked bounding boxes from different camera perspectives 
(see Sec. IV B). We construct a b-cylinder from the converged 3D points and conduct close and complete 
target mapping with SLAM. 



 

 
 
 
 



 

Results obtained  
 
We evaluated the target-oriented mapping system with two experiments in Gazebo simulation using a 
gaming laptop, Dell G7: Intel Core i7-8750H, 16GB RAM, and Nvidia GeForce GTX 1060 Max-Q, which 
has similar computing capacity with Intel NUC i7 plus Nvidia TX2. In both experiments, we use a 3DR Iris 
with an RGBD sensor (γ = 60°) operated by PX4 SITL and MAVROS. The UAV pose estimation is 
maintained by an EKF fusing data from IMU in the flight controller and a GPS module. Sensor noises of 
GPS, IMU, and magnetometer are also simulated in Gazebo. A tiny YOLO v2 is initialized from the 
darknet53 [21] and finely tuned with the images collected in the Gazebo worlds, and the real-time 
inference is deployed using YOLO ROS [22]. We apply RTAB-MAP [9] for RGBD mapping, and the 
mapping service is only activated during the mapping motion. The vertical scanning field of view β is 40°. 
For the control system, the maximum velocity is 1m/s and the maximum acceleration is 1m/s 2 . The first 
experiment is conducted to demonstrate the target-oriented mapping pipeline for a field reconstructed 
from real data. We built the mesh model with one PBR (Fig. 1 (bottom left)) using SfM with UAV imagery 
that was manually collected at Granite Dells, Prescott AZ, 2019. The UAV trace with different motion 
states is shown in Fig. 6a. As the mapping result presented in Fig. 1 (right), the presented system has 
mapped the target and also provided access to the complete visible surface features of the PBR including 
the ground basal contact, which is crucial to calculate the PBR’s fragility for earthquake studies. 
 
The purpose of the second experiment is to examine the system with multiple sparsely distributed targets. 
The 3D terrain model (Fig. 7a) is built in Blender [23] with texture from satellite imagery and digital 
elevation model from OpenTopography [24]. We import seven synthesized PBRs to the terrain model as 
our mapping targets. The UAV trace is shown in Fig. 6b, and the mapping results are displayed in Fig. 7b. 
We show the system robustness by measuring the performances of key components in Experiment II 
(Table. I). As false positive and missing detections are the major cause of the problems in the following 
components, we inspect the worst neural network detection performance (IoU>0.5) in one of the seven 
PBR mappings, where each begins from the end of a previous PBR mapping to the converged 
assessment of a current PBR. The other components are measured for the entire seven PBR mappings 
based on the target states presented from the system and the desired target states without considering 
mission duration. For the false positives and false negatives of converging, we only consider the cases 
that are caused by false detections from the neural network. We neglect the cases where there are not 
enough detections due to the bounding box is too close to the image edges, because they are eventually 
detected from other search perspectives. This experiment shows the robustness of the system as all 
seven PBRs are successfully mapped, especially with regard to the existence of false positives and false 
negatives in other components. 
 
 
 
 



 
 
 
 

 
 



 
 

 

 

 
Analysis framework 
 
To analyze rocks mapped using our search and map pipeline, we developed a framework by 
teaming up with Prof. Christine Wittich at University of Nebraska-Lincoln. In this framework, are 
connecting our proposed pipeline leveraging physics engines, with prior methods for fragility 
analysis of precariously balanced rocks. As a result, we were able to start using shake 
properties and metrics defined with prior principled methods, into the arena of discrete element 
modeling in physics engines such as those deployed in our OpenUAV simulation testbed. 
Preliminary results are promising, showing insights into the PGA vs PGV/PGA relationships, and 
toppling probability.  
 
Fig. 8 shows a screenshot of one of our analysis videos available at 
https://www.youtube.com/watch?v=Edt7oGTkscM 
 

https://www.youtube.com/watch?v=Edt7oGTkscM


 
 
Fig 8: Comparison of results from discrete element modeling in Gazebo simulator, with solutions 
using principled methods established by Rood et al. 2020.  

 

 

Conclusions:  
Our SCEC work developed a target-oriented system for UAV to map fragile geologic features 
such as PBRs, whose geometric fragility parameters can provide valuable information on 
earthquake processes and landscape development. Such a system provides access to 
autonomous PBR mapping, which was lacking in field geology but will be essential to geologic 
model assessment. Our ultimate goal is to deploy this target-oriented mapping system to actual 
boulder fields and to assess the quality of 3D mapping. Additionally, 3D semantic segmentation 
should be applied to extract 3D points of PBRs from their contact terrains, which leads to PBR 
surface reconstruction. We have implemented the circular motion for target mapping, which is 
based on an assumption that there are no obstacles during the mapping. This can be improved 
by framing the mapping task as a probabilistic exploration problem. Next-bestview or 
frontier-based exploration algorithms [25, 26] can be used to generate an obstacle-free path and 
accurately determine occupancy within the bounding cylinder. 
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