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I. Project Overview 

A. Abstract 
In the box below, describe the project objectives, methodology, and results obtained and their signifi-
cance. If this work is a continuation of a multi-year SCEC-funded project, please include major research 
findings for all previous years in the abstract. (Maximum 250 words.) 
 
We developed a convolutional neural network (CNN) based phase detection and picking approach 
named CPIC (Zhu et al., 2019). The method was first applied on a one-month aftershock sequence of 
2008 Mw7.9 Wenchuan earthquake. 20-sec-long waveform frames are cut from 5 seconds before and 15 
seconds after the picked P or S arrival times. Trained only on ~40,000 such frames, our CNN-based 
phase identification classifier (CPIC) achieve 97.6% classification accuracy on unseen 20,000 picked 
frames. More importantly, the CPIC approach is generally applicable to many seismic active regions, 
such as southern California, Oklahoma, and New Zealand. Benchmarked on the SCSN dataset (4.8M 
picked arrival times) released by the Caltech researchers, the CPIC model achieves similar high accura-
cy (99.5%) with a significantly simpler model and faster execution time. Finally, when tested on a small 
dataset from a different region (Oklahoma, US), CPIC achieves 97% accuracy after fine-tuning only the fully 
connected layer of the model. This result suggests that the CPIC developed in this study can be used to 
identify and pick P/S arrivals in other regions with no or minimum labeled phases. 

B. SCEC Annual Science Highlights 
Each year, the Science Planning Committee reviews and summarizes SCEC research accomplishments, 
and presents the results to the SCEC community and funding agencies. Rank (in order of preference) the 
sections in which you would like your project results to appear. Choose up to 3 working groups from be-
low and re-order them according to your preference ranking. 
 

Seismology 
Computational Science 
Mining Seismic Wavefields 

C. Exemplary Figure 
Select one figure from your project report that best exemplifies the significance of the results. The figure 
may be used in the SCEC Annual Science Highlights and chosen for the cover of the Annual Meeting 
Proceedings Volume. In the box below, enter the figure number from the project report, figure caption and 
figure credits. 
 
Figure 2. Detection example on 15-minute recording on 14 stations with three catalog events for the 
Wenchuan dataset. Only vertical components are plotted. Blue and green curves show the probabilities 
of P and S phases. Red and magenta bars indicate the catalog P and S arrivals. Origin times of three 
catalog events are marked by the dashed vertical lines along with their magnitudes. 
 

D. SCEC Science Priorities 
In the box below, please list (in rank order) the SCEC priorities this project has achieved. See 
https://www.scec.org/research/priorities for list of SCEC research priorities. For example: 6a, 6b, 6c 
 
3a, 3b, 3c 
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E. Intellectual Merit 
How does the project contribute to the overall intellectual merit of SCEC? For example: How does the 
research contribute to advancing knowledge and understanding in the field and, more specifically, SCEC 
research objectives? To what extent has the activity developed creative and original concepts?  
 
This project develops a machine learning based tool for seismic phase picking and detection that re-
quires a small to moderate amount of training data. It is also applicable to other regions. An improved 
phase picking and event detection could result in many small-magnitude earthquakes being detect-
ed/located, which can help to improve our understanding of subsurface fault structures, large earthquake 
nucleation and earthquake interaction at nearby and long-range distances. 

F. Broader Impacts 
How does the project contribute to the broader impacts of SCEC as a whole? For example: How well has 
the activity promoted or supported teaching, training, and learning at your institution or across SCEC? If 
your project included a SCEC intern, what was his/her contribution? How has your project broadened the 
participation of underrepresented groups? To what extent has the project enhanced the infrastructure for 
research and education (e.g., facilities, instrumentation, networks, and partnerships)? What are some 
possible benefits of the activity to society? 
 
This project supported collaborations of two GT students. Lijun Zhu from School of Electronic and Com-
puter Engineering (ECE), and he is expected to defend his Ph.D. thesis in July 2019. This work is a ma-
jor component of his Ph.D. thesis. Chenyu Li is a 5th year graduate student from School of Earth and 
Atmospheric Sciences (EAS). She is expected to graduate in summer 2020. We are in the process of 
releasing the related package and test dataset online at https://github.com/lijunzh/yews 

G. Project Publications 
All publications and presentations of the work funded must be entered in the SCEC Publications data-
base. Log in at http://www.scec.org/user/login and select the Publications button to enter the SCEC Pubi-
cations System. Please either (a) update a publication record you previously submitted or (b) add new 
publication record(s) as needed. If you have any problems, please email web@scec.org for assistance. 
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II. Technical Report 
The technical report should describe the project objectives, methodology, and results obtained and their 
significance. If this work is a continuation of a multi-year SCEC-funded project, please include major re-
search findings for all previous years in the report. (Maximum 5 pages, 1-3 figures with captions, refer-
ences and publications do not count against limit.) 

A. Automatic Phase Arrival Picking based on CNN classifier 
The increasing volume of seismic data from long-term continuous monitoring motivates the development 
of algorithms based on convolutional neural network (CNN) for faster and more reliable phase detection 
and picking (e.g., Ross et al., 2018; Zhu and Beroza, 2019). We have developed a CNN-based Phase-
Identification Classifier (CPIC) designed for phase detection and picking on small to medium-sized train-
ing datasets (Zhu et al., 2019). When trained on 30,146 labeled phases and applied to one-month of con-
tinuous recordings during the aftershock sequences of the 2008 MW 7.9 Wenchuan Earthquake in Si-
chuan, China, CPIC detects 97.5% of the manually picked phases (Table 1) in the standard catalog and 
predicts their arrival times with a five-times improvement over the ObsPy (Beyreuther et al., 2010) AR-
picker (Figure 1). In addition to the catalog phases manually picked by analysts, CPIC finds more phases 
for existing events and new events missed in the catalog (Figure 2). Among those additional detections, 
some are confirmed by a matched filter method while others require further investigation.  
 
The core of the CPIC framework is the CNN classifier shown in Figure 3. An off-line training process op-
timizes the parameters of the CNN-based classifier iteratively over the labeled dataset. The trained classi-
fier is then used during on-line processing for both phase detection and picking. The CNN classifier con-
tains 11 convolutional layers along with one fully-connected layer, which processes many labeled win-
dows known to contain P or S phases, or noise only. A Softmax function is used to normalize the proba-
bilities in the output layer: 

 𝑞!(!)  =  !{!!}

(!^{!!(!)} ! !^{!!(!)} ! !^{!!(!)})
,         (1) 

where i=0, 1, 2 represents noise, P, and S classes, respectively. 𝑧!(𝑥) is the unnormalized output of the 
last fully-connected layer for the ith class. Rectified linear unit (ReLU) is used as the activation function to 
introduce non-linearity to the CNN model. Data dimension is reduced at each layer via the max-pooling 
scheme. The CNN model is trained using the cross-entropy loss between true probability distribution p 
and the estimated distribution q as following: 
𝐻 𝑝, 𝑞 = − 𝑝 𝑥! log 𝑞(𝑥).         (2) 
Adam algorithm is applied in the training process to optimize the model parameters, which converges 
nicely after 100 epochs (Figure 4b). 

B. Comparison with recent works 
One advantage of the CPIC method is the small requirement of the training dataset size. When compared 
with state-of-art methods, such as Generalized Phase Detector GPD (Ross et al. 2018) and PhaseNet 
(Zhu and Beroza, 2019), the CPIC method achieves comparable accuracies while only relies on a much 
smaller training set. Both of the aforementioned methods used training sets with more than 1 million sam-
ples. However, the CPIC model converges on training set as small as several thousand samples. Thus, 
the CPIC model can be applied to a broader range of datasets with fewer picked arrivals. The simpler 
model also results in fewer model parameters, which demands less computation power. 
 
The CPIC model is further validated on the SCSN dataset released by SCEDC/Caltech 
(http://scedc.caltech.edu/research-tools/deeplearning.html). The SCSN dataset consists of 4.7 million 
three-component four-second-long waveforms of P phase, S phase, and noise. Trained on 80% randomly 
selected waveforms, the CPIC model reaches 98.6% accuracy on the rest 20% unseen waveforms. Alt-
hough the validation accuracy is slightly lower than the benchmarked 99% accuracy from Ross et al. 
2019, we avoid having the overfitting problem observed in that model which the loss function diverge after 
two epochs (Figure 4a). The CPIC model maintains a steady accuracy and loss event after 200 epochs. 
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Using the same benchmarked picking method (ObsPy ARPicker), we achieve a more significant im-
provement in picking accuracy over the benchmark method even though we have a lower absolute accu-
racy due to the more challenging dataset we used. We believe that the CPIC approach is more suitable 
for regions with fewer catalog arrival times and more challenging noise conditions. 

C. Applications of CPIC on additional regions 
The CPIC model is not only useful to the region it was trained on, but also shines some insight on the 
general phase arrival picking problem. We apply the trained CPIC model on the aftershock waveforms 
from Wenchuan to the induced earthquake waveforms in Oklahoma, U.S. Summarized in Table 2, the 
original Wenchuan CPIC model already reaches a high 87.5 % overall accuracy. The stations having 
similar source-receiver distances (OK025 and OK029) results in over 90% accuracy while the station fur-
ther away (OK030) only reaches 69.9%. After fine-tuning the CPIC model using only 2,000 labeled wave-
forms, the overall accuracy of the CPIC model reach 97%. This transfer-learning example demonstrates 
that the CPIC model has high potential for generalizing to broader applications on different monitoring 
regions.  
 

 
Figure 1. The distributions of picking errors of CPIC (upper panels) and ObsPy AR picker (lower panels) 
on the validation dataset. After Zhu et al. (2019). 

 
Figure 2. Detection example on 15-minute recording on 14 stations with three catalog events for the 
Wenchuan dataset. Only vertical components are plotted. Blue and green curves show the probabilities of 
P and S phases. Red and magenta bars indicate the catalog P and S arrivals. Origin times of three cata-
log events are marked by the dashed vertical lines along with their magnitudes. After Zhu et al. (2019). 
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Figure 3. CNN-based Phase-Identification Classifier (CPIC) flow chart. Inputs are three-component seis-
mograms recorded at a single station, labeled in red. Outputs are P-wave, S-wave or noise window prob-
abilities, and picked arrival times for P and S phases, shown in green. After Zhu et al. (2019).  

 

 
Figure 4(Left). Cross-entropy loss during training and validation of the GPD model on SCSN dataset 
(Ross et al., 2018). (b) Accuracies and losses during training and validation of the CPIC model on SCSN 
dataset. 

 
Table 1. Confusion matrix for phase classification on the validation dataset which is the latest 20% of the 
labeled phases. 
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Table 2.  CPIC accuracy when testing on a three-station seismic dataset in OK, USA. The first row shows 
the performance of directly applying CPIC as trained on the Wenchuan, China dataset, while the second 
row shows the enhanced accuracy after fine-tuning CPIC on 2,000 training samples from the Oklahoma 
region. 

D. Student Support and Involvement  
This project provided 3-month support (1.5-month each) for graduate students Chenyu Li and Lijun 

Zhu at Georgia Tech. Li is a 5th year Ph.D. student in School of Earth and Atmospheric Sciences (EAS). 
She has been using the matched filter detection to study spatial-temporal changes of seismicity in SSGF 
following nearby and large distant earthquakes as funded by SCEC (Li et al., 2017), as well as detecting 
aftershocks following a magnitude 7.5 intermediate-depth earthquake in Hindu Kush region (Li et al., 
2018a). Recently she was also involved in applying the CPIC to other regions (Li et al., 2018b). Zhu is a 
6th year Ph.D. student in the School of Electrical and Computer Engineering (ECE) at Georgia Tech. He 
has been working on phase picking using CNN since 2017 (Zhu et al., 2017, 2018). The proposed work 
will be part of their Ph.D. thesis. 

E. Acknowledgement 
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(Beyreuther et al., 2010). The seismic data utilized in this study is obtained during the 2017 “Aftershock 
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