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Summary 
Ground motion simulations can be viable alternatives to empirical relations for seismic hazard 
analysis when data are sparse. However, in many cases, simulated ground motion time series, in 
particular those originating from stochastic methods, lack inter-frequency correlation revealed in 
recorded seismic data, which has implications for seismic risk. We develop a post-processing 
method to rectify simulation techniques that otherwise produce synthetic time histories deficient 
in inter-frequency correlation structure. 
 
Fourier Amplitude Spectrum (FAS) and Effective Amplitude Spectrum (EAS) 
The Effective Amplitude Spectrum (EAS), defined by Kottke et al. (2018) as 

𝐸𝐴𝑆(𝑓) = ()
*
[𝐹𝐴𝑆-.)* (𝑓) + 𝐹𝐴𝑆-.** (𝑓)] ,   Eq. 1 

is used as the intensity measure in our study. In Eq. 1, 𝐹𝐴𝑆-.) and 𝐹𝐴𝑆-.* are the FAS of the two 
as-recorded horizontal components of a three component acceleration time series, and 𝑓 is the 
frequency in Hertz. The 𝐸𝐴𝑆 is independent of the recording instrument’s orientation. The 𝐸𝐴𝑆 is 
smoothed using the log10-scale Konno and Ohmachi (1998) smoothing window selected by Kottke 
et al. (2018): 
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 ,      Eq. 2 
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 ,                              Eq. 3 
where 𝑊 is the weight defined at frequency 𝑓 for a window with center frequency fc, 𝑏 is the 
window parameter, and 𝑏C =

)
DE

 is the bandwidth of the smoothing window in log10 units. For 
more details on the smoothing technique, the reader is referred to Kottke et al. (2018). 
 
Inter-Frequency Correlations of Within-Event Residuals 
We follow the notation defined by Al Atik et al. (2010): 
 

𝑦GH = 𝜇GH + 𝛿𝐵G + 𝛿𝑊GH  ,     Eq. 4 
 
where 𝑦GH is the natural logarithm of the ground-motion intensity measure observed at station 𝑠 
during earthquake 𝑒, and 𝜇GH  is the mean prediction of the natural logarithm of the intensity 
measure. 𝛿𝐵G  is the between-event residual (or inter-event residual), representing the average shift 
of the observed ground motion for an individual earthquake 𝑒 from the population mean prediction. 
𝛿𝑊GH  is the within-event residual (or intra-event residual), depicting the misfit between an 
individual observation at station 𝑠 from the earthquake-specific mean prediction. The source effect 
average (over all azimuths) is described by the between-event residual that reflects the influence 
of factors such as stress drop and variation of slip in time and space that cannot be captured by the 
inclusion of magnitude, faulting style, and source depth in the mean prediction. Azimuthal 
variations in source, path, and site effects are described by the within-event residual that reflects 
the influence of factors such as crustal heterogeneity, deeper geological structure, and near-surface 
layering that cannot be captured by a simple distance metric and a site-classification based on the 
average shear-wave velocity (Al Atik, et al., 2010). These residuals are normally distributed with 
zero mean and are uncorrelated with each other. 
 



In this study, we target the EAS within-event residual through epsilon (𝜀), 
 

𝜀(𝑓) = OPQR(;)
S(;)

= 85TUVQR(;)WXYZ[\]QR(;)WO^Q
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 ,   Eq. 5 
 

the within-event residual normalized by its standard deviation 𝜑. The value of the within-event 
residual of EAS depends on frequency 𝑓. By the normalization, epsilon is standard normally 
distributed with zero mean and unit standard deviation. 
 
For a given set of observations, the values of 𝜀 at neighboring frequencies (𝑓) are probabilistically 
correlated. If a ground motion intensity measure is stronger than average at a certain frequency, 
then it tends to also be stronger at nearby frequencies; however, the 𝜀 values are weakly correlated 
if the frequency pair are widely-separated (Bayless and Abrahamson, 2018b). The correlation 
coefficient of 𝜀 at two frequencies 𝑓) and 𝑓* can be estimated by the maximum likelihood estimator 
(Kutner et al., 2004) using the Pearson product-moment correlation coefficient (Fisher, 1958), 
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 ,  Eq. 6 

 
in which 𝑛 is the number of observations, 𝜀l(𝑓)) and 𝜀l(𝑓*) represent the 𝑖th observation of 𝜀 at 
frequencies 𝑓) and 𝑓*, respectively, 𝜀(𝑓))ggggggg and 𝜀(𝑓*)ggggggg are their sample means, and the expectations 
of 𝜀(𝑓))ggggggg and 𝜀(𝑓*)ggggggg are both zero. This correlation is important when simulated time histories are 
used for seismic risk analysis because variability in the dynamic structural response will be 
underestimated if the inter-frequency correlation in simulated ground motions is unrealistically 
low (Bayless and Abrahamson, 2018b).  
 
Bayless and Abrahamson (2018a) generated an empirical estimate of 𝜌 for the EAS within-event 
residual using the NGA-West2 database (regression from shallow crustal earthquakes, with M>3) 
at frequencies from 0.1 Hz to 24 Hz. The epsilon at each frequency was calculated from the 
individual EAS values and the earthquake-specific smoothed EAS median model for each recorded 
event at each station. Then, 𝜌a(;b)a(;c) was calculated for each pair of frequencies, 𝑓) and 𝑓* . Figure 
1 shows the empirical correlation coefficients. 
 
Inclusion of Inter-frequency Correlation in FAS 
The procedure to generate a new ground motion time series with realistic inter-frequency 
correlations is as follows: 
 
(1) take the Fourier transform of the two horizontal components of the synthetic ground motion 
time series. For each component, let the number of frequency points be 𝑛, the Fourier amplitude 
and phase at the 𝑖th frequency be 𝐴𝑚𝑝qrl(𝑖) and 𝑃ℎqrl(𝑖), respectively; 
(2) for each of the horizontal components, sample a normally distributed vector-valued random 
variable 𝑅 with zero mean, a constant standard deviation, 𝜎, and size 𝑛; 
(3) express the empirical covariance 𝜌a(;b)a(;c) from Eq. 6 in matrix form Σ (𝑛 by 𝑛, real, 
symmetric, and positive definite), and apply the Cholesky decomposition of Σ as 
 



Σ = KKy,     Eq. 7 
 

where K is a 𝑛 by 𝑛 lower triangular matrix (Seydel, 2012); 
(4) left multiply random variable 𝑅 in (3) by K as 
 

𝑆 = 𝐾𝑅 ,     Eq. 8 
 

to generate a normal random variable 𝑆 with zero mean and covariance equal to 𝜎*KKy = 𝜎*Σ 
(Seber and Lee, 2012); 
(5) multiply the exponential of 𝑆 with 𝐴𝑚𝑝qrl to compute the Fourier amplitude of the new ground 
motion synthetics, 𝐴𝑚𝑝{GC, as 
 

𝐴𝑚𝑝{GC(𝑖) = 𝐴𝑚𝑝qrl(𝑖) exp 𝑆l ;  Eq. 9 
 

(6) calculate the new ground-motion time series by applying the inverse Fourier transform to the 
spectrum obtained in (5). 
 
The method can be applied as the last step to simulate the ground-motion using the SDSU SCEC 
BBP module, and thus classified as post-processing. It retains the mean of the Fourier amplitude 
for the updated ground-motion synthetics, since the mean of exp 𝑆l in step (5) equals 1. Taking 
the natural logarithm of the equation in step (5) we get 
 

ln 𝐴𝑚𝑝{GC(𝑖) = ln𝐴𝑚𝑝qrl(𝑖) + 𝑆l .  Eq. 10 
 
We tested our method by calculating the within-event residual for the Loma Prieta event on the 
SCEC BBP. It is important to emphasize that the results generated using different source 
realizations from the kinematic source generator module by Graves and Pitarka (2015) for that 
validation event should be treated as different events, rather than multiple realizations of the same 
event. The reason for this is that the source realizations have variations in hypocenter locations 
and slip distributions that are represented by the between-event residual. Then, for each event, we 
generate 10 realizations at all the stations from each of the 50 ‘events’ by changing the seed number 
in the random number generator for the scatterograms. For each set of 10 realizations, the mean of 
the 10 simulations and the within-event residual at each station are computed. The within-event 
residual at all stations and all realizations of the ‘events’ are pooled together by their corresponding 
frequency. Note, that if the total number of stations is 𝑚, then at each frequency 𝑓 the epsilon of 
the within-event residual 𝜀(𝑓) has a size equal to 10	𝑟𝑒𝑎𝑙𝑖𝑧𝑎𝑡𝑖𝑜𝑛𝑠	𝑏𝑦	50	′𝑒𝑣𝑒𝑛𝑡𝑠�	𝑏𝑦	𝑚 =
500	𝑚. 
 
Figure 1 shows that the resulting inter-frequency correlation coefficients obtained by our method 
for the Loma Prieta validation event compare very well with the empirical result, as intended. 
From Figure 2 it is clear that the addition of correlation to the synthetic time histories results in 
insignificant changes in the bias. The method generates correlated synthetic time series that are 
very similar to the original results from current SDSU BBP Module. Figure 3 shows one 
component of synthetic time histories (velocity and acceleration) and FAS, respectively, at station 
8001-CLS for the Loma Prieta validation event before and after implementing the inter-frequency 
correlations. The method can be used as a post-processing step to incorporate the correlation into 



an already established and validated ground motion generator. Finally, Figure 4 shows that our 
method also works well to incorporate realistic inter-frequency correlation into PSA.  
                                          (a)                                                                               (b) 

 

Figure 1. The inter-frequency correlation coefficients of epsilon at reference frequencies 0.2 Hz, 0.5 Hz, 1 
Hz, 2 Hz, 5 Hz and 10 Hz from the empirical correlation coefficients (dashed lines) and the SDSU SCEC 
BBP Module after applying our method. (a) Using independent random variables at two horizontal 
components (solid lines), and (b) using correlated random variables (with correlation coefficient equals 0.7) 
at two horizontal components (solid lines) for the Loma Prieta event. 

 

Figure 2. The natural log of the misfit between median RotD50 PSA for observations and predictions using 
50 source realizations for the original (uncorrelated) (top) and (bottom) correlated SDSU synthetics for the 
Loma Prieta event. 
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Figure 3. Examples of the north-south component of velocities (left) and accelerations (right) at station 
8001-CLS for Loma Prieta event after (top) and before (bottom) implementing the inter-frequency 
correlations. 
 

 
 
Figure 4. Comparison of the inter-frequency spectral acceleration correlation coefficients of epsilon at 
reference periods 0.1 s (top) and 1 s (bottom) from the Baker and Jayaram (2008) model (dashed black 
lines) and the SDSU SCEC BBP Module after applying our method (solid red lines) for the Loma Prieta 
event with 50 realizations. 
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