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Motivation 
Frequent evidence for stable, aseismic fault slip—in which there is no runaway, earthquake-

nucleating instability—includes observations of transient slow slip events, interseismic creep, 
and postseismic slip. A common presumption is that runaway acceleration of fault slip in these 
instances is suppressed by the self-limiting effect of a slip-rate-strengthening friction. This may 
be due to a non-linear viscous rheology, in which fault strength has a power-law dependence on 
sliding rate, or a non-linear rate and state dependence of friction, in which strength depends 
logarithmically on the sliding rate, as well as its history. How do such slip-rate-dependent 
friction laws couple with elastic deformation to determine the spatiotemporal evolution of slip on 
a fault in response to a driving force? How does an elevated slip rate spread along the fault, at 
what rate does it decay, and how are these integrated to affect displacement at the surface?  
Problem formulation and solutions 

We began by examining the consequences of assuming a frictional strength that depends 
linearly on slip rate. The advantage of starting with such a viscous fault description is that it 
preserves the mathematical linearity of the problem coupling this strength criterion slip to the 
linear elastic deformation of the medium. Consequently, classical analytical solution techniques 
apply and the results have relevance for more general, non-linear dependence on slip rate and 
state. While key results are summarized below, further discussion and details can be found in 
Viesca and Dublanchet [2019]. 

We considered in-plane or anti-plane slip along a planar fault. In these cases, the shear stress 
on the fault plane τ can be written, for some distribution of slip δ(𝑥, 𝑡), as   

  
Where 𝜇! is an effective shear modulus and 𝜏"(𝑥, 𝑡) is the shear stress resolved on the fault plane 
in the absence of slip, which can be considered an external forcing. The shear strength of a thin 
viscous layer of thickness h and viscosity 𝜂# is 

 
where 𝑉 = ∂δ/ ∂𝑡 is the slip rate, where slip is the displacement of top of the viscous layer 
relative to that at the bottom. We require that 𝜏 = 𝜏$ along the fault plane. After non-
dimensionalizing, the problem governing the evolution of slip (or similarly, slip rate) reduces to 

 
and resembles the diffusion equation 

 
where a spatial derivative has been replaced by the Hilbert transform ℋ[𝑓(𝑥, 𝑡)] = ∫ #($,')
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We leverage the problem linearity to use its Green’s function to write solutions for slip rate 
in response to a time-varying stress rate ∂𝜏"/ ∂𝑡 as   

 
Where the Green’s function for problem (3) was found to be 

 
Implying that an impulsive loading on the fault leads to a slip rate that spreads in space ~	𝑡 and 
decays with time ~	𝑡),. 	

As a simple, illustrative example consider the problem determining the spatiotemporal decay 
of an initially elevation of fault slip rate, in the form 𝑉(𝑥, 0) = 𝐻(−𝑥), where H is the Heaviside 
step function. The full solution is 

 
We may compare this solution to the well-known solution for classical diffusion under the same 
initial conditions  

  
For problems in which fault loading is localized in space in time, we derive asymptotic 

expansion for slip rate  

 
where the functions fn of the similarity variable 𝜂 =	𝑥/𝑡 are known. The coefficients an contain 
information on the spatial distribution of fault loading that triggered the slip-rate transient at 
early time. Specifically, for a sudden loading on the fault imposed at 𝑡 = 0, the coefficients 
reflect the moments of the load distribution. In Viesca and Dublanchet [2019], we provide 
several worked example solutions and their asymptotic expansion. In the following section we 
focus on the problem of postseismic slip, using the asymptotic expansion for fault slip rate (9) to 
in turn derive the asymptotic behavior of displacement at the surface of a strike-slip fault.  
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Figure 1. Similarity solutions (red and cyan) for slip rate V for a linear viscous fault having undergone an initial step 
in stress on x < 0, a problem equivalent to having the initial slip rate distribution shown in black. The cyan curve 
corresponds to the well-known error-function solution satisfying the classical diffusion equation and exhibits 
characteristic exponential decay. In contrast, the red curve, illustrating the solution (#) satisfying the non-local 
diffusion equation (#), exhibits power-law decay with a distinct similarity variable, x/t. 
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Implications for postseismic deformation 

The compact, closed-form nature of the solutions allow for general results to be found for 
displacement at the surface in response to a slip transient on a viscous fault. In Figure 2, we 
consider the anti-plane slip of a fault subject to an initial step in stress over a finite depth. We 
derive the full solution for slip along the fault and displacement at the surface. We also derive the 
long-time asymptotic behavior of each. Displacement at the surface accumulates logarithmically 
with time. 

Previously, logarithmic time-histories of surface displacements were taken as supporting 
evidence for a slip rate- and state-dependent friction, given that the coupling of such a 
logarithmic slip rate dependence with a spring-block slider model of afterslip would in turn lead 
to a logarithmic accumulation of displacement [e.g., Marone et al.  1991; Perfettini and Avouac, 
2004; Montesi, 2004; Helmstetter and Shaw, 2009], while other descriptions (linear or power-
law viscous) would not. However, we find that this exclusion to be a consequence of the 
assumption that area of the fault that participates in afterslip the remains fixed, with the fault 
locked against sliding on all boundaries of this area. Our analysis of the full continuum problem 
relaxes this assumption and allows slow slip to evolve along the fault. Doing so, we find that any 
linearizable rate-strengthening description would lead to a logarithmic (or near-logarithmic) 
accumulation of displacement due to afterslip at long times. While in the example problem 
considered, the entire fault is allowed to slide in this example for analytical simplicity, enforcing 
locking conditions over a finite depth and allow for post-seismic creep below, reveal comparably 
weak time dependence of post-seismic surface displacements.  

Figure 2. (top) A strike-slip fault in the x-z plane intersects the free surface at x = 0. The solution to a sudden step in 
stress tb at t = 0 along the fault (x > 0) is found by method of images. The hatched area is the net force exerted on the 
fault (per unit distance along z), which determines the leading-order coefficient a1 of the asymptotic expansion. (left) 
Boxcar step in stress imposed at t = 0. (right) Evolution of the anti-plane displacement component uz at the free 
surface, to one side of the fault. The displacement quickly approaches a logarithmic asymptote (dashed). 
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Relevance for rate-and-state friction and application to models of creeping landslides  
Most fault strength descriptions are non-linear. What is the relevance of the results of a linear 

for these descriptions? First, most non-linear descriptions are linearizable about a finite or zero 
slip rate, such that the linear description can be used to consider the spatiotemporal evolution of 
slip in response to small perturbations. Second, for larger perturbations, the asymptotic 
expansion of our linear results here suggests a route for conducting a non-linear perturbation 
expansion for non-linear problems. We investigated such a perturbation expansion for a rate- and 
state-dependent fault friction. We examined the decay of a rate-strengthening fault back to steady 
creep following a perturbation in stress. We found that the leading order term in the asymptotic 
expansion (9) applies to a rate-and-sate fault as well. In addition, the subsequent terms in the 
asymptotic expansion (9) appear in the perturbation expansion, alongside corrections for the non-
linearity of the friction. 

In parallel to investigating the effects of a rate- and state-dependent friction, we also 
investigate the quantitative difference of assuming an elastic configuration commonly used to 
model translational landslide motion: a compliant elastic layer overriding a rigid substrate (Wang 
et al., 2018). This change entailed replacing the convolution in (1) with another spatial 
derivative, such that in the case of a linearly viscous basal friction, the problem governing slip 
and slip rate reduces to the classical diffusion equation (4). We derived the perturbation 
expansion for the slip rate for a creeping landslide subject to an external loading (e.g., an 
increase in basal shear stress, or comparably, an increase in basal pore pressure) and whose basal 
friction is described a rate- state-dependent basal friction. The perturbation expansion describes 
the long-time behavior of the transient increase in down-slope displacement of the landslide.  
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