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Abstract

Most inversions consider the depth distribution of interseismic fault slip-rate to be time invariant.
However, some numerical simulations show penetration of dynamic rupture into regions with
velocity-strengthening friction, with subsequent interseismic up-dip propagation of the locked-
to-creeping transition. We explored this hypothesis by developing and testing crack models to
describe creep penetration upward into the locked region. Previous work from Bruhat and Segall
(2017) developed a new method to characterize interseismic slip rates, that does not assume
that the spatial distribution of interseismic slip is stationary. This simple model considers deep
interseismic slip as a crack loaded at specified slip rate at the down-dip end. It provides analytical
expressions for stress drop within the crack, slip, and slip rate along the fault.

This work extended this new class of solution to strike-slip fault environment. Unlike Bruhat
and Segall (2017) which considered creep propagation in a fully elastic medium, we included here
the long-term deformation due to viscoelastic flow in the lower crust and upper mantle. We
improved the model presented in Bruhat and Segall (2017) to account for the coupling between
creep and viscoelastic flow, and derived expression for viscoelastic response due to time-dependent
creep. Finally, we employed this model to investigate the long-term rates along the Carrizo Plain
section of the San Andreas fault. A paper describing this work is now in review.
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The earliest models for interseismic deformation described a fault as a single screw dislocation
in an elastic half-space, locked to some depth, but slipping at a constant rate below. Using this
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model, kinematic inversions of geodetic surface rates have, for decades, been used to estimate the
locking depth, presumed to delimit the deep extent of the seismogenic region.

Bruhat and Segall (2017) recently developed a new method to characterize interseismic slip
rates, that allows slip to penetrate up dip into the locked region. This simple model considered
deep interseismic slip as a crack loaded at constant slip rate at the down-dip end. We provided
analytical expressions for stress drop within the crack, slip, and slip rate along the fault, and
enabled inversions for physical characteristics of the fault interface, bridging purely kinematic
inversions to physics-based numerical simulations of earthquake cycles.

In this study, we apply this model of propagating deep interseismic creep to strike-slip earth-
quake cycle models. Unlike Bruhat and Segall (2017) which considered creep propagation in a
fully elastic medium, we include here the long-term deformation due to cyclic earthquake ruptures
on a fault in an elastic crust, overlying a viscoelastic medium.

Propagating crack models for viscoelastic strike-slip earthquake cycle models
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Figure 1: Model set-up for this study. The fault ac-
commodates long-term plate rate v∞. Every T years,
an earthquake ruptures the upper part of the elas-
tic crust. Maximum coseismic slip is given by Tv∞.
During the interseismic period, the deeper part of the
fault creeps, pushing the locking depth up.

Consider a strike-slip fault embedded in an
elastic layer of thickness H, overlying a
Maxwell viscoelastic half-space (Figure 1). The
fault is partially locked during the interseis-
mic period, but slips below. Every T years,
an earthquake partly ruptures the fault section.
The sum of seismic and aseismic slip must keep
pace with the far-field motion. Thus, the max-
imum coseismic displacement is ∆u = Tv∞.

Surface rates vhorz result from 1) cumula-
tive effects of the viscoelastic earthquake cycle
vEQcycle, and 2) the elastic and viscoelastic re-
sponses due to interseismic creep, respectively
velcreep and vvecreep:

vhorz = vEQcycle + velcreep + vvecreep.

While expression for vEQcycle can be found in
Savage and Prescott (1978) and Segall (2010,
Sections 6.3 and 12.4.1), we derive expressions
for the elastic and viscoelastic responses due to
interseismic creep.

Crack models for interseismic creep
Consider a 1D crack of length a, extending

vertically in the elastic layer and loaded by displacement δ∞(t) at the top of the viscoelastic
medium (see Figure 1). We follow the same approach developed in Bruhat and Segall (2017) who
expanded the stress drop within the crack in Chebyshev polynomials of the first kind Ti:

∆τ(ξ, t) = µ
∞∑
i=0

ciTi(ξ), (1)

where ci are the coefficients of the Chebyshev polynomials, and ξ is a normalized spatial variable
such that ξ ∈ [−1, 1]. For a non-singular crack driven at steady displacement, Bruhat and Segall
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(2017) derived values of the coefficients ci for i = 0, 1. This methodology provides expressions
for slip, slip rate, stress and stress rate within the crack. Since the bottom end of the crack is
anchored to the upper limit of the viscoelastic medium, the displacement and velocity boundary
conditions must reflect the viscoelastic response of the mantle. We approximate the displacement
and velocity boundary conditions as δ∞ and δ̇∞, assuming a first-order expansion of the series in
Segall (2010, Section 12.4.1):

δ∞ = = v∞T
( e−T/tR

e−T/tR − 1

)
(1− e−t/tR), (2a)

δ̇∞ =
v∞T

tR

( e−T/tR

e−T/tR − 1

)
e−t/tR . (2b)

where tR is the Maxwell relaxation time.

Viscoelastic response from time-varying interseismic creep
We then develop a method to compute the viscoelastic response due to time-varying slip rates

below the locked region. Consider ṡ(t) the slip rate distribution along the fault within the region
defined between the deep extent of earthquake rupture D and the top of the viscoelastic layer H.
Following Savage and Prescott (1978) and Segall (2010, Section 12.4.1), the viscoelastic response
associated with slip-rate ṡi(t) at depth zi, due to successive earthquakes at times t′ extending from
−∞ to current time t is:

v̂i(x, t) =
1

π

∞∑
n=1

Gn(x, zi, H)

(n− 1)!

∫ t

−∞
ṡi(t
′)e−(t−t

′)/tR
( t− t′

tR

)n−1
dt′, (3)

where Gn is the spatial operator defined by:

Gn(x, zi, H) = Fn(x, zi+1, H)− Fn(x, zi, H), (4a)

and Fn(x, zi, H) = tan−1

(
2nH − zi

x

)
− tan−1

(
2nH + zi

x

)
. (4b)

We assume that the slip rate distribution ṡ(t) can be expressed as the sum of the long-term plate
motion rate and a time-dependent term:

ṡ(t) =

{
v∞ + ∆ṡ(t) when t ≥ 0

v∞ when t < 0
(5)

The steady part v∞ applies to all past earthquake cycles, whereas the time-dependent term cor-
responds to the present cycle. Substituting this expression into equation (3) leads to:

v̂i(x, t) =
1

π

∞∑
n=1

Gn(x, zi, H)
(
v∞ +

1

(n− 1)!

∫ t

0
∆ṡi(t

′)e−(t−t
′)/tR

( t− t′
tR

)n−1
dt′
)
. (6)

Equation (6) gives the expression of the cumulative effect of viscoelastic flow due to time-
dependent creep. This approximation is compared to results from Johnson and Segall (2004) who
computed slip and slip rate within the creeping region through a boundary element approach for
a fault subject to constant shear stress.
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Figure 2: Elastic and viscoelastic deformation induced by time-
varying creep when tR = T/2 and tR = T/10. The creeping region
is described by a crack lying initially between 18 and 25 km, mi-
grating vertically at 10 m/year. Left panels show the slip rate
profiles as a function of depth. Middle panels show the elastic
surface velocity due to interseismic creep. Right panels give the
viscoelastic surface velocity using equation (6). Dashed back line
is the solution for creep at constant rate v∞.

Figure 2 displays slip rate pro-
files along depth and surface dis-
placement rate profiles as a func-
tion of distance perpendicular to
the fault due to elastic and vis-
coelastic response. These profiles
are computed at five times dur-
ing the interseismic period, and
for two relaxation times tR. Here
the creeping region is described fol-
lowing the crack model described
above, by a crack lying initially be-
tween 18 and 25 km, migrating ver-
tically at 10 m/year. At t = 0 the
viscoelastic response is the same as
the solution for a region creeping
at constant rate v∞. Depending
on the relaxation time, the behav-
ior early in the interseismic period
varies. Later in the cycle, the am-
plitude of the viscoelastic response
decreases with time and distance.

Application to the Carrizo
Plain segment of the San
Andreas fault

We apply this model to horizontal
long-term rates in Central Califor-
nia provided by the SCEC Crustal
Motion Model Map 4.0 published in Shen et al. (2011). Stations perpendicular to the Carrizo
Plain section of the San Andreas fault are then selected (Figure 3).

This study developed inverse methods to test different models of interseismic deformation, in
some cases accounting for propagating deep slip. We first found best fitting solutions for classical
models that consider the fault to be either a single dislocation in a fully elastic medium, or models
that include a region of steady creep above a viscoelastic region. We also consider solutions based
on the boundary element method developed by Johnson and Segall (2004). We finally apply the
method developed here including propagating deep interseismic creep. Inversions solve for the
elastic thickness H, the depth of uniform rupture D, the locking depth, defined by the top of the
creeping region d, the long-term plate motion rate v∞, the viscoelastic relaxation time tR, and the
maximum coseismic displacement ∆u, related to the earthquake recurrence time T (see Figure 1).
The migration speed vup is defined such that the creeping region reaches the down dip limit of
maximum coseismic slip at the end of the earthquake cycle.

To ensure that at the end of the cycle, slip along the entire fault is equal to the imposed far-
field displacement, the coseismic slip distribution is defined as the complement of the aseismic slip
distribution at the end of the cycle. Finally, in order to be consistent with the depth distribution
of microseismicity, we consider solutions whose peak in stress rate lies in the same region as the
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Figure 3: Data set used in this study. Left: Map of central and southern California fault system with
selected stations. The San Andreas fault is denoted in blue. Right: Fault parallel component of interseismic
velocities relative to the North American plate for the selected stations.

current seismicity (between 8–13 km). This is an important point in our inversion. Our updated
model allow us to derive the distribution of shear stress rate within the creeping region. While our
inversion is directed by horizontal geodetic velocities, we assume that the location of maximum
shear stressing rate should coincide with the region of largest moment release from the micro-
seismicity. We employ Markov Chain Monte Carlo (MCMC) methods for the inversions. MCMC
algorithms efficiently estimate the maximum-likelihood solution and enable the construction of
posterior distributions.

Best fitting models are displayed in Figures 4 and 5. Our best fitting solutions suggest uniform
coseismic slip to a depth of 10 km, then slowly tapering to zero at 15-20 km (Figure 5). Interseismic
creep is restricted to between ≈10 km and the top of the viscoelastic layer and can potentially
migrate vertically at speeds up to 10 m/year. Estimates of elastic thickness vary from 18 to 23 km.
This model exhibits positive stress rate within the same region than the current microseismicity.

Figure 4 shows that the differences in fit are limited. Our improved model shows, however, a
better range for the likelihood, compared to all other inversions. We also compute the deviance
information criterion (DIC) (Spiegelhalter et al., 2002) to compare the fits. The DIC is a way
of measuring model fit, similar to Akaike information criterion (AIC), but for MCMC solutions.
Models with lower DIC give the best estimated solutions. In this study, although we increased the
number of parameters, our improved model has a DIC lower than all the other inversions.

Compared to the model with constant creep from Savage and Prescott (1978) and the boundary
element model developed by Johnson and Segall (2004), we present a kinematic model that allows
the spatial migration of the creeping region during the earthquake cycle. We derived for this
analytical expressions to compute the viscoelastic response due to time-dependent creep. Although
this model remains kinematic, it provides physical insights of the transitional region between the
locked region and the top of the viscoelastic medium.

Using this improved model, we found solutions for fitting the surface deformation rates in the
Carrizo Plain section of the San Andreas fault, that allow for reasonable estimates for earthquake
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Figure 4: Best fitting models, log-likelihood distributions and corresponding deviance information criteria.
Although the difference is small, our propagating creep model fits better the data set compared to other
models.
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Figure 5: Distribution of coseismic slip, slip rate, stress rate, D, d and H for our improved model. Median
solutions are indicated in bold lines, the 2-σ uncertainties are given by the shaded regions. We compare the
obtained stress rate distribution to the cumulative moment from microseismicity between 1981 and 2016
along the Carrizo Plain (Lin et al., 2007; Hauksson et al., 2012).
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rupture depth and coseismic displacement, with respect to the current microseismicity. Although
this model was designed to account for a possible migration of the locking depth, best fitting
solutions have very low propagation speeds, less than a meter per year, pointing to a lack of creep
propagation. Future work should consider the use of additional data sets, such as microseismicity,
repeating earthquakes, and tremor locations, to confirm and better constrain this behavior in
fault systems. As a corollary, the difference in fit with models developed by Johnson and Segall
(2004) where creep occurs at constant stress, does not seem to be caused by the additional creep
propagation. The systemic better fit that is observed here might originate from the fact the model
we developed, independently from the propagation, seems to provide a more flexible solution for
creep rate distribution in the transitional region. This model could be used in the future as a guide
for studying the state and temporal evolution of transitional region on strike-slip fault systems.
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