

Validation of Ground Motion Modelling of the Largest M5.7+ Aftershocks of the Canterbury 2010-2011 Earthquake Sequence

C. Holden & A. Kaiser GNS Science, P O Box 30368, Lower Hutt, New Zealand. c.holden@gns.cri.nz

2016 SCEC Annual Meeting

Modelling Approach (Holden and Kaiser, 2016)

- 1- Identifying fault strong motion generation areas
- 2- Broadband rock motion modelled via purely stochastic approach [0.1-10 Hz] modelled using a Finite Fault stochastic code (EXSIM - Motazedian and Atkinson, 2005)
- 3- Stress drop, regional Q and site responses (Fig. 2 and 3): (Oth and Kaiser, 2014; Kaiser et al., 2013)
- Advantages: simple, comprehensive and effective
- Capturing realistic features of source and site effect
- Excellent for rock and shallow sites
- Key engineering parameters: PGA, durations and response spectra
- Non-linear shaking
- Absence of realistic phases

Validation schemes

Time and frequency metrics (Fig. 2.3):

- Key scalars: PGA, PGV
- Overal signal duration envelop
- Key phase arrivals
- Dominant frequencies
- Response spectra for various damping

Engineering specific metrics (Rezaeian et al., 2015) (Fig. 4,5,6):

- capture entire time evolution of intensity and frequency content
- 1: mean-square intensity of acceleration in time
- 2: cumul, number of zero level crossings; evolution of main freg. of motion
- 3: cumul. number of peaks: evolution of the freq. bandwidth with time

Case study: ground motion modelling of the Mw 5.9 Dec. 2011 earthquake

- Energy derived from site-specific synthetics tends to increase too fast (see SHLC) possibly due to limitation of time-stationary freq. dependent site response factors

- Fig. 5 and 6 shows that the high frequency part of the signals is captured satisfyingly in the modelling for the core part of the signal (matching slopes for first 10 seconds)