C. Holden \& A. Kaiser GNS Science, P O Box 30368, Lower Hutt, New Zealand. c.holden@gns.cri.nz

Modelling Approach (Holden and Kaiser, 2016)

1- Identifyying fault strong motion generation areas
2- Broadband rock motion modelled via purely stochastic approach $[0.1-10 \mathrm{~Hz}]$ modelled using a Finite Fault stochastic code
(EXSIM - Motazedian and Atkinson, 2005)
3- Stress drop, regional Q and site responses (Fig. 2 and 3):
3- Stress drop, regional Q and site respons
(Oth and Kaiser, 2014; Kaiser et al., 2013)

- Advantages: simple, comprehensive and effective

Advantages: simple, comprehensive and effective

- Capturing realistic features of source and site effect
- Excellent for rock and shallow sites
- Key engineering parameters: PGA, durations and response spectra Limitations:
- Non-linear shak
- Non-linear shaking
- Absence of realistic phases

Validation schemes

- Time and frequency metrics (Fig. 2,3):
- Key scalars: PGA, PGV
- Overal signal duration envelop
- Key phase arrivals
- Dominant frequencies
- Response spectra for various damping

Engineering specific metrics (Rezaeian et al., 2015) (Fig. 4,5,6):

- capture entire time evolution of intensity and frequency content
- 1: mean-square intensity of acceleration in time
- 2: cumul. number of zero level crossings: evolution of main freq. of motion - 3: cumul. number of peaks: evolution of the freq. bandwidth with time

Case study: ground motion modelling of the Mw 5.9 Dec. 2011 earthquake

Engineering-specific metrics (Rezaeian et al., 2015)

