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1. Introduction 
 

An earthquake simulator is a computer program that generates a synthetic earthquake catalog spanning 

thousands of years, or longer. Most of the computational effort in an earthquake simulator goes into 

computing how slip on one part of a fault affects stresses on other parts of the fault, and on other faults. 

The computation is done by discretizing the fault system into a large number of fault elements, and using 

Greens functions to determine how a pattern of slip on some fault elements affects the stresses on all the 

fault elements (Tullis et al. 2012; Ward 2012; Sachs et al. 2012; Pollitz 2012; Richards-Dinger and 

Dieterich 2012). 

 

Traditionally, earthquake simulators have used rectangular fault elements, chosen so that the Okada 

Greens functions can be used (Okada 1992). Recently, due to the development of new Greens functions 

for triangular dislocations, it has become practical to use triangular fault elements (Meade 2007; 

Gimbutas et al. 2012). The purpose of this project is to assess the accuracy of stress calculations 

performed with triangular fault elements, as compared to the accuracy of the same calculations done with 

rectangular fault elements. 

 

For planar faults, rectangles and triangles can be expected to give the same results (except possibly if the 

fault has an irregular boundary, which triangles can follow more accurately than rectangles). But for 

curved faults, rectangles and triangles give different results. When a fault is curved, partitioning it into 

rectangular fault elements will necessarily create gaps and overlaps between adjacent elements. (It should 

be noted that the Okada Greens functions do not work with arbitrary rectangles, but instead require 

rectangles whose upper and lower edges are horizontal. Meeting this constraint further exacerbates the 

creation of gaps and overlaps.) In contrast, partitioning a curved fault into triangular fault elements can be 

done using a triangular mesh which has no gaps or overlaps between adjacent elements. 

 

Because triangles can represent curved fault geometry more accurately than rectangles, one intuitively 

expects that stress calculations performed with triangles should be more accurate than stress calculations 

done with rectangles. The original motivation for this project was to demonstrate that this intuitive 

expectation is true, and quantify the difference in accuracy. 

 

However, our results are contrary to the intuitive expectation. In our tests, triangles are not superior to 

rectangles. One or the other may be superior in a particular case, but, overall, rectangles perform as well 

as or better than triangles. Another unexpected result is that one triangulation of a fault surface may 

perform significantly better than another triangulation with a different pattern of triangles. 
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2. Research Strategy 
 

We performed stress computations on two curved fault surfaces, one with negative curvature and one with 

positive curvature. 

 

Our negatively-curved surface is motivated by the shape of the San Andreas Fault in southern California 

(Fuis et al. 2012). We ran our tests on a strike-slip fault in the shape of a helicoid, with dip angles ranging 

from +45 degrees at one end of the fault to −45 degrees at the other end of the fault, passing through 90 

degrees at the center of the fault, and with a straight fault trace. 

 

Our positively-curved surface is motivated by the shape of the Cascadia subduction fault (McCrory et al. 

2012). We ran our tests on a thrust fault in the shape of an ellipsoid, with dip angles ranging from 10 

degrees at the earth’s surface to 30 degrees at the base of the fault, and strike angles ranging from +30 

degrees to −30 degrees. 

 

For both surfaces, we used greater curvature than the natural fault, in order to emphasize the effects of the 

curvature. 

 

Our strategy is to impose uniform slip on part of the fault surface, and then compute the induced shear 

and normal stresses elsewhere on the fault surface. We examined the induced stresses in two places: 

immediately adjacent to the slipping portion of the fault, and 4.8 km away from the slipping portion. The 

induced stresses immediately adjacent to the slipping area are relevant for the simulation of rupture 

propagation during an earthquake, because the earthquake rupture proceeds from the currently-slipping 

elements to their neighboring elements. The stresses 4.8 km away from the slipping area are relevant for 

examining the accuracy of stress transfer over larger distances, particularly for simulators that employ 

rate-state friction, in which stress changes influence the evolution of fault state even before the onset of 

seismic slip. We chose a separation of 4.8 km because it is roughly the maximum size of a fault-to-fault 

jump (Wesnousky 2006). 

 

To assess the accuracy of the calculation, we discretize the fault surfaces using either rectangles or 

triangles, each in six different sizes: 300, 600, 1200, 2400, 4800, and 9600 meters. The 300 m results are 

taken as the reference solution, and the accuracy of the other five sets of results is assessed by how well 

they approximate the reference value. We now describe in detail how this is done. 

 

 

Accuracy Assessments 

 

Earthquake simulators use fault elements in two ways: as sources and as targets. For each pair of fault 

elements S and T, the simulator computes the shear and normal stress acting on the centroid of the target 

element T, due to fault slip occurring on the source element S. Each fault element acts as both a source 

and a target. (Some simulators use both shear and normal stress, while other simulators use only the shear 

stress.) 

 

When the fault is curved, the fault elements can only approximate the curved surface. When computing 

stresses, there is some error due to the fact that the source element does not lie precisely in the surface, 

and there is some error due to the fact that the target element does not lie precisely in the surface. We 

perform two tests to separately evaluate these two causes of error, and determine whether triangular or 

rectangular elements are better: 
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1. A source test which evaluates the error originating at the source elements. This test is performed 

using a source region and target region that are separated by 4800 meters. We vary the 

discretization of the source region, using either triangles or rectangles with sizes ranging from 

600 to 9600 m. The discretization of the target region is held fixed. In this report, the target 

region is discretized with 600 m rectangles; other discretizations yield similar results. In each 

case, a reference solution is calculated by discretizing the source region with 300 m elements. 

 

2. A target test which evaluates the error originating at the target elements. This test is also 

performed using a source region and target region that are separated by 4800 meters. The 

discretization of the source region is held fixed. In this report, the source region is discretized 

with 300 m rectangles. We vary the discretization of the target region, using either triangles or 

rectangles with sizes ranging from 600 to 9600 m. In each case, a reference solution is calculated 

by using 300 m elements in the target region, placed so that their centroids align with the 

centroids of the larger elements. (That is, the 300 m elements and the larger elements have the 

same centroids in the (𝑧, 𝑑) coordinate system, where 𝑧 and 𝑑 represent depth and distance-

along-strike as defined below. Note that there will be large gaps between the 300 m elements, 

because the number of 300 m elements is the same as the number of larger elements.) In order to 

have a valid comparison, it is necessary to preserve the centroid locations, because simulators 

evaluate the induced shear and normal stress at the centroids of the target elements. 

 

When an earthquake rupture is propagating along a fault surface, the rupture expands from the region that 

is currently slipping into the immediately adjacent fault elements. So, it is important for a simulator to be 

able to accurately compute stresses in the fault elements adjacent to a slipping region. We use a third test 

to evaluate whether rectangles or triangles are better for this important case: 

 

3. A propagation test which evaluates errors occurring during rupture propagation. This test is 

performed using a target region that borders on the source region, with no separation. We vary the 

discretization of both the source region and the target region, using either triangles or rectangles 

with sizes ranging from 600 to 9600 m. The source and target regions are discretized in the same 

way (e.g., if one is 1200 m triangles then so is the other), as would be the case in a simulator. In 

each case, a reference solution is calculated by discretizing both the source and target regions 

with 300 m elements. In the target region, the centroids of the 300 m elements are aligned with 

the centroids of the larger elements, as in the target test. 

 

 

Error Metric 

 

A calculation produces one stress value for each target fault element. If there are 𝑁 target elements, then 

the stress values can be expressed as an 𝑁-dimensional vector (𝑠1, … , 𝑠𝑁). The components 𝑠𝑖 can be 

either shear stresses or normal stresses. We handle shear stresses and normal stresses separately, so that 

the vector (𝑠1, … , 𝑠𝑁) consists of either all shear stresses, or all normal stresses. We also have available a 

reference solution (𝑠1
∗, … , 𝑠𝑁

∗ ). In order to produce a numerical measure of accuracy, we need to have a 

metric for comparing (𝑠1, … , 𝑠𝑁) to (𝑠1
∗, … , 𝑠𝑁

∗ ), that is, we need a metric for comparing 𝑁-dimensional 

vectors. 

 

Our metric is based on the Q metric developed by the SCEC Dynamic Rupture Code Verification Project 

(Barall and Harris 2015). The Q metric value can range from 0 percent (for perfect agreement) to 200 

percent (for vectors pointing in opposite directions); lower values indicate better agreement. Suppose 

𝒂 = (𝑎1, … , 𝑎𝑁) is an 𝑁-dimensional vector. Define the 𝐿1 norm of 𝒂 to be: 

 



 

5 

 

‖𝒂‖1 ≡∑|𝑎𝑖|

𝑁

𝑖=1

 

 

Then, given two 𝑁-dimensional vectors 𝒂 and 𝒃, we compare them using the 𝑄 metric defined as: 

 

𝑄 ≡
‖𝒂− 𝒃‖1

‖𝒂‖1 + ‖𝒃‖1
 

 

In order to express 𝑄 as a percentage, the above value is multiplied by 200. All our results use the 𝑄 

metric, expressed as a percentage, to measure the accuracy of a stress calculation. 
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3. Fault Geometry and Discretization 
 

We now specify in detail the geometry of our two fault surfaces, the location of the source and target 

regions, and the manner in which they are partitioned into fault elements. 

 

The fault is embedded in a three-dimensional space with (𝑥, 𝑦, 𝑧) coordinates. The 𝑧 coordinate is vertical 

and points upward, so negative 𝑧-values are underground. The average strike of the fault lies parallel to 

the 𝑦-axis. 

 

We introduce a fourth coordinate 𝑑, which represents distance along strike (Barall 2012). Every point on 

the fault surface is identified by the coordinate pair (𝑧, 𝑑). In order to specify the three-dimensional shape 

of the fault, we must specify the mapping (𝑧, 𝑑) ⟼ (𝑥, 𝑦, 𝑧). In other words, we must specify 𝑥 and 𝑦 as 

functions of 𝑧 and 𝑑. 

 

 

 

Negatively-Curved (Helicoidal) Fault Geometry 

 

Our negatively-curved fault surface is a section of a helicoid. It is a strike-slip fault. See Figure 1. Its 

equations are: 

 

𝑥 = 𝑧 tan(𝑑/𝑟𝑑) 
 

𝑦 = 𝑑 
 

𝑧min ≤ 𝑧 ≤ 𝑧max 
 

𝑑min ≤ 𝑑 ≤ 𝑑max 
 

The parameters for the helicoid are shown in the following table: 

 

Parameters for Helicoidal Surface 

Parameter Value 

𝑟𝑑 24446.1993 m 

𝑧min −19200 m 

𝑧max 0 m 

𝑑min −19200 m 

𝑑max 19200 m 

 

With these parameters, the fault trace is a straight line 38400 m long, and the dip angle varies from +45 

degrees at one end of the fault to −45 degrees at the other end of the fault. 

 

Remark: We also performed some tests using a helicoid that is 76800 m long, and so has lower curvature. 

The results were similar to the results shown in this report. 
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On the negatively-curved fault, we describe tests using four configurations of source region and target 

region. We designate these four configurations N1 through N4. See Figure 2. The following table defines 

the four configurations, and shows which tests are performed on each configuration. In the table, all 

dimensions are in meters, and 𝑒 denotes the element size. 

 

Source and Target Configurations for Helicoidal Surface 

Designation Source Region Target Region Tests Direction 

N1 
−19200 ≤ 𝑧 ≤ 0 

−19200 ≤ 𝑑 ≤ 0 

−19200 ≤ 𝑧 ≤ 0 

4800 ≤ 𝑑 ≤ 4800 + 𝑒 

Source and 

target tests 

Strike-slip 

N2 
−19200 ≤ 𝑧 ≤ 0 

−19200 ≤ 𝑑 ≤ 0 

−19200 ≤ 𝑧 ≤ 0 

0 ≤ 𝑑 ≤ 0 + 𝑒 

Propagation test Strike-slip 

N3 
−19200 ≤ 𝑧 ≤ 0 

−19200 ≤ 𝑑 ≤ 9600 

−19200 ≤ 𝑧 ≤ 0 

14400 ≤ 𝑑 ≤ 14400 + 𝑒 

Source and 

target tests 

Strike-slip 

N4 
−19200 ≤ 𝑧 ≤ 0 

−19200 ≤ 𝑑 ≤ 9600 

−19200 ≤ 𝑧 ≤ 0 

9600 ≤ 𝑑 ≤ 9600 + 𝑒 

Propagation test Strike-slip 

Figure 1. Negatively-curved fault surface. The surface is a section of a helicoid. All dimensions are in meters. 

The fault trace is a straight line, at 𝑥 = 0, extending from 𝑦 = −19200 to 𝑦 = +19200. Fault dip is −45 

degrees at one end of the fault, and +45 degrees at the other end of the fault. Dip is 90 degrees in the center of 

the fault, at 𝑦 = 0. The fault extends from the earth’s surface at 𝑧 = 0, to a maximum depth of 𝑧 = −19200. 

This is a strike-slip fault. Grid lines are contours of constant depth (𝑧) and contours of constant distance-along-

strike (𝑑), and do not represent fault elements. 
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N1 N2 

N3 N4 

Figure 2. Source and target configurations for the negatively-curved (helicoidal) fault surface. The four 

configurations are designated N1 through N4. The source region is shown in red, and the target region is shown 

in green. The target region is a strip one element thick; the figures assume an element size of 1200 m. Grid lines 

are contours of constant depth (𝑧) and contours of constant distance-along-strike (𝑑), and do not represent fault 

elements. 

Figure 3. Discretization patterns for the negatively-curved (helicoidal) fault surface. The figure 

shows three different ways that a portion of the fault surface is partitioned into fault elements. The 

three methods are “rectangle”, “triangle-2”, and “triangle-4”. See the main text for further description. 

For the “rectangle” method, the figure shows the fault elements as non-planar quadrilaterals, before 

they are converted into perfect rectangles. Conversion into perfect rectangles will create gaps and 

overlaps between adjacent rectangular fault elements. The figure is not to scale. 

rectangle triangle-2 triangle-4 
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For each test, we must discretize both the source and target regions. See Figure 3. Discretization is done 

using either rectangles or triangles, with element sizes of 300, 600, 1200, 2400, 4800, or 9600 meters. To 

discretize a region with rectangles, we perform the following steps: 

 

1. Working in the (𝑧, 𝑑) coordinate system, partition the region into a checkerboard pattern of 

rectangles. The number of rows and columns in the checkerboard are chosen so that the length 

and width of each rectangle equals the element size as closely as possible. Due to the fault 

curvature, this step produces “rectangles” that are actually non-planar quadrilaterals. 

 

2. Modify each rectangle so that its four vertices lie in a plane, and it is of a form suitable for use 

with the Okada formulas. (See below for procedure.) Due to the fault curvature, this step creates 

gaps or overlaps between adjacent fault elements. 

 

We explore two different methods for discretizing a region into triangles. We call these methods 

“triangle-2” and “triangle-4”. To discretize a region with triangles, using the triangle-2 method, we 

perform the following steps: 

 

1. Partition the region into a checkerboard pattern of rectangles, as described above. 

 

2. Cut each rectangle into two triangles, by cutting it along the diagonal that extends from the lower 

left corner to the upper right corner of the rectangle. 

 

To discretize a region with triangles, using the triangle-4 method, we perform the following steps: 

 

1. Partition the region into a checkerboard pattern of rectangles, as described above. 

 

2. Cut each rectangle into four triangles, by cutting it along both diagonals. 

 

In the test results, we will see that the triangle-4 method yields significantly greater accuracy than the 

triangle-2 method. 

 

 

 

 

Positively-Curved (Ellipsoidal) Fault Geometry 

 

Our positively-curved fault surface is a section of an ellipsoid. It is a dip-slip fault. See Figure 4. Its 

equations are: 

 

𝑥 = 𝑥0 + 𝑟𝑥 cos (
𝑑 − 𝑑0
𝑟𝑑

)√1 − (
𝑧 − 𝑧0
𝑟𝑧

)
2

 

 

𝑦 = 𝑦0 + 𝑟𝑦 sin (
𝑑 − 𝑑0
𝑟𝑑

)√1 − (
𝑧 − 𝑧0
𝑟𝑧

)
2

 

 

𝑧min ≤ 𝑧 ≤ 𝑧max 
 

𝑑min ≤ 𝑑 ≤ 𝑑max 
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The parameters for the ellipsoid are shown in the following table: 

 

Parameters for Ellipsoidal Surface 

Parameter Value 

𝑥0 −73198.5030 m 

𝑦0 0 m 

𝑧0 −20418.7912 m 

𝑑0 0 m 

𝑟𝑥 117619.9820 m 

𝑟𝑦 80203.1670 m 

𝑟𝑧 26085.8149 m 

𝑟𝑑 51192.9964 m 

𝑧min −11064.7197 m 

𝑧max 0 m 

𝑑min −19200 m 

𝑑max 19200 m 

 

The parameters are chosen to satisfy the following properties, which uniquely determine all the 

parameters: 

 

Figure 4. Positively-curved fault surface. The surface is a section of an ellipsoid. All dimensions are in meters. 

The fault trace is a curve, whose strike angle varies from −30 degrees to +30 degrees. Fault dip is 10 degrees at 

the top center of the fault, and 30 degrees at the bottom center of the fault. The fault extends from the earth’s 

surface at 𝑧 = 0, to a maximum depth of approximately 𝑧 = −11065. This is a dip-slip (thrust) fault. Grid lines 

are contours of constant depth (𝑧) and contours of constant distance-along-strike (𝑑), and do not represent fault 

elements. 
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 The top edge of the patch, which is the fault trace, has an arc length of 38400 m. 

 

 The bottom edge of the patch has an arc length of 57600 m. 

 

 The curve connecting the center of the top edge to the center of the bottom edge has an arc length 

of 38400 m. 

 

 At the center of the top edge, the dip angle is 10 degrees. 

 

 At the center of the bottom edge, the dip angle is 30 degrees. 

 

 At the top left and top right corners, which are the ends of the fault trace, the strike angles are +30 

degrees and −30 degrees, respectively. 

 

 

 

On the positively-curved fault, we describe tests using three configurations of source region and target 

region. We designate these three configurations P1 through P3. See Figure 5. The following table defines 

the three configurations, and shows which tests are performed on each configuration. In the table, all 

dimensions are in meters, and 𝑒 denotes the element size. Introduce a coordinate 𝑣 which represents 

distance down-dip, measured on the fault surface, along an arc from the middle of the fault trace to the 

middle of the bottom of the fault. The value of 𝑣 is 0 m at the earth’s surface, and −38400 m at the bottom 

of the fault. 

 

 

 

 

 

P1 P2 

P3 Figure 5. Source and target configurations for 

the positively-curved (ellipsoidal) fault surface. 
The three configurations are designated P1 through 

P3. The source region is shown in red, and the target 

region is shown in green. The target region is a strip 

one element thick; the figures assume an element 

size of 1200 m. Grid lines are contours of constant 

depth (𝑧) and contours of constant distance-along-

strike (𝑑), and do not represent fault elements. 
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Source and Target Configurations for Ellipsoidal Surface 

Designation Source Region Target Region Tests Direction 

P1 
−38400 ≤ 𝑣 ≤ −19200 

−19200 ≤ 𝑑 ≤ 19200 

−14400 ≤ 𝑣 ≤ −14400 + 𝑒 

−19200 ≤ 𝑑 ≤ 19200 

Source and 

target tests 

Dip-slip 

P2 
−38400 ≤ 𝑣 ≤ −19200 

−19200 ≤ 𝑑 ≤ 19200 

−19200 ≤ 𝑣 ≤ −19200 + 𝑒 

−19200 ≤ 𝑑 ≤ 19200 

Propagation test Dip-slip 

P3 
−38400 ≤ 𝑣 ≤ −9600 

−19200 ≤ 𝑑 ≤ 19200 

−9600 ≤ 𝑣 ≤ −9600 + 𝑒 

−19200 ≤ 𝑑 ≤ 19200 

Propagation test Dip-slip 

 

For each test, we must discretize both the source and target regions. See Figure 6. Discretization is done 

using either rectangles or triangles, with element sizes of 300, 600, 1200, 2400, 4800, or 9600 meters. 

The discretization procedure is more complicated than for our negatively-curved fault, because our 

positively-curved fault cannot be partitioned into a checkerboard pattern of rectangles. To discretize a 

region with rectangles, we perform the following steps: 

 

1. Cut the region into horizontal strips, by slicing it with a set of horizontal planes. The planes are 

non-uniformly spaced, so that all the strips have equal thickness (i.e., the same change in 𝑣) as 

measured along the fault surface. The number of planes is chosen so that the strip thickness is 

equal to the element size as closely as possible. 

 

2. For each strip, determine the number of elements that fit along the strip. Divide the length of the 

strip, as measured along the fault surface, by the element size, and round to the nearest integer. 

 

3. For each strip, construct a horizontal strip of rectangles, with the calculated number of elements. 

Due to the fault curvature, this step produces “rectangles” that are actually non-planar 

quadrilaterals. 

 

4. Modify each rectangle so that its four vertices lie in a plane, and it is of a form suitable for use 

with the Okada formulas. (See below for procedure.) Due to the fault curvature, this step creates 

gaps or overlaps between adjacent fault elements. 

Figure 6. Discretization patterns for the positively-curved (ellipsoidal) fault surface. The figure shows three 

different ways that a portion of the fault surface is partitioned into fault elements. The three methods are 

“rectangle”, “triangle-1”, and “triangle-3”. See the main text for further description. For the “rectangle” method, 

the figure shows the fault elements as non-planar quadrilaterals, before they are converted into perfect 

rectangles. Conversion into perfect rectangles will create gaps and overlaps between adjacent rectangular fault 

elements. Note that unlike on our negatively-curved surface, the “rectangle” method does not produce a 

checkerboard pattern. The figure is not to scale. 

rectangle           triangle-1 triangle-3 
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Notice that because each strip has a different length and a different number of rectangles, the rectangles 

do not produce a checkboard pattern. In other words, a vertex of a rectangle can lie in the middle of an 

edge of a rectangle in an adjacent strip. So, unlike our negatively-curved fault, it is not possible to 

triangulate the surface by starting with rectangles and then cutting the rectangles into triangles. 

 

We explore two different methods for discretizing a region into triangles. We call these methods 

“triangle-1” and “triangle-3”. To discretize a region with triangles we perform the following steps: 

 

1. Cut the region into horizontal strips, as described above. 

 

2. For the top and bottom edge of each strip, determine the number of elements that fit along the 

edge. Divide the arc length of the edge, as measured along the fault surface, by the element size, 

and round to the nearest integer. 

 

3. For the top and bottom edge of each strip, lay out equally-spaced nodes along the edge. The 

number of nodes is one more than the number of elements that fit along the edge. 

 

4. For each strip, construct a strip of triangles that connects the nodes at the top edge to the nodes at 

the bottom edge. 

 

5. When a strip has the same number of nodes along the top and bottom edges, there is more than 

one way to construct the strip of triangles. For the “triangle-1” method, the longest triangle edges 

are all positively sloped (that is, run from bottom-left to top-right). For the “triangle-3” method, 

the longest triangle edges alternate between positive slope and negative slope. 

 

In the test results, we will see that the triangle-1 method and the triangle-3 method yield almost identical 

accuracy. 

 

 

 

Modification of Rectangular Fault Elements 

 

As noted above, in order to discretize a curved fault surface with rectangles, it is necessary to modify the 

original non-planar quadrilaterals to form rectangles that are suitable for use with the Okada formulas. We 

are not aware of a published standard algorithm for performing this modification, although it seems 

probable that modelers have created such algorithms for their own use. So, we created an algorithm, 

which we describe here. 

 

Starting with a non-planar quadrilateral, whose four vertices lie in the fault surface, we perform the 

following steps to convert it into a suitable rectangle: 

 

1. Identify the top edge of the quadrilateral. Calculate the (𝑥, 𝑦, 𝑧) coordinates of the midpoints of 

the four edges. The edge whose midpoint has the maximum 𝑧 coordinate is taken to be the top 

edge. 

 

2. Calculate the center of the quadrilateral, which is defined to be the average (𝑥, 𝑦, 𝑧) coordinates 

of the four vertices. 
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3. Calculate the strike vector, which is defined to be the midpoint of the right edge minus the 

midpoint of the left edge. 

 

4. Calculate the dip vector, which is defined to be the midpoint of the top edge minus the midpoint 

of the bottom edge. 

 

5. Modify the strike vector so that it is horizontal. Do this by setting its 𝑧-component equal to zero. 

 

6. Modify the dip vector so that it is perpendicular to the modified strike vector. Do this by adding a 

multiple of the modified strike vector to the dip vector, choosing the multiple so that the sum is 

perpendicular to the modified strike vector. 

 

7. The final rectangle is the unique rectangle whose center coincides with the center of the original 

quadrilateral, and which has the modified strike and dip vectors. 
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4. Test Results 
 

The following graphs (Figures 7-16) show our test results. The graphs show how the accuracy of the 

stress calculation varies as the size of the fault elements is varied. There are separate graphs for shear 

stress and normal stress. 

 

Each graph is a log-log plot, in which the approximation error (Q metric), in percent, is plotted against the 

number of fault elements. For the source and propagation tests, it is the number of elements in the source 

region. For the target test, it is the square of the number of elements in the target region, to account for the 

fact that the size of the target region varies with the element size. (On a logarithmic plot, it makes little 

difference if the number of elements is squared or not, because squaring just changes the horizontal scale 

by a factor of two.) 

 

The number of fault elements is the right thing to use on the horizontal axis, because the number of fault 

elements is what determines the computational effort that a simulator must exert to calculate the stress 

transfer. 

 

There are three curves on each plot: a blue curve that shows results for rectangular fault elements, and red 

and green curves that show results for triangular fault elements. The red and green curves correspond to 

two different methods for constructing the triangulation. 

 

Normal stress always has much larger errors than shear stress. This is due to the fact that for source and 

target elements on the same fault, normal stresses tend to be smaller than shear stresses, so a small 

absolute error in normal stress can equate to a large percentage error. Bear in mind that when source and 

target elements are co-planar, the normal stress is zero except for free-surface effects (and exactly zero if 

the elements are vertical). So normal stress percentage errors are particularly large for the propagation 

test, where the source and target elements are adjacent and so are nearly co-planar. 
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Shear stress 

Normal stress 

Figure 7. Source Test: Negatively Curved Fault Configuration N1. For shear stress, rectangle and 

triangle-4 perform about equally well, and both are better than triangle-2. For normal stress, triangle-4 

is a little better than rectangle, which in turn is much better than triangle-2. 
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Shear stress 

Normal stress 

Figure 8. Source Test: Negatively Curved Fault Configuration N3. For shear stress, rectangle and 

triangle-4 perform about equally well, and both are better than triangle-2. For normal stress, triangle-4 

is better than rectangle, which in turn is better than triangle-2. These results are similar to the source 

test for configuration N1. 
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Shear stress 

Normal stress 

Figure 9. Source Test: Positively Curved Fault Configuration P1. For shear stress, rectangle is 

slightly better than triangle-1 or triangle-3. For normal stress, rectangle is noticeably better than 

triangle-1 or triangle-3. The graphs for triangle-1 are difficult to see because they lie almost exactly 

underneath the graphs for triangle-3. 
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Shear stress 

Normal stress 

Figure 10. Target Test: Negatively Curved Fault Configuration N1. Rectangle greatly out-

performs both triangle-2 and triangle-4, on both shear and normal stress. We attribute the poor 

performance of triangles, particularly on normal stress, to the fact that on a negatively-curved surface 

the triangulation is slightly corrugated. That is, differently-oriented triangles have somewhat different 

strike and dip angles, which generate errors when the stress tensor is resolved onto the triangular fault 

elements. In contrast, our algorithm for producing rectangular fault elements attempts to preserve the 

strike and dip angles, which leads to improved accuracy in resolving the stress tensor. 
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Shear stress 

Normal stress 

Figure 11. Target Test: Negatively Curved Fault Configuration N3. Rectangle greatly out-

performs both triangle-2 and triangle-4, on both shear and normal stress. These results are similar to 

the target test for configuration N1. 
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Shear stress 

Normal stress 

Figure 12.  Target Test: Positively Curved Fault Configuration P1. Rectangle out-performs both 

triangle-1 and triangle-3, for both shear and normal stress, except for one anomalous point on the 

normal stress plot. Triangles perform much better on the positively-curved fault surface than they did 

on the negatively-curved surface (although still not as well as rectangles). We attribute this to the fact 

that the positively-curved fault surface has less tendency to produce corrugations in the triangulation. 

The graphs for triangle-1 are difficult to see because they lie almost exactly underneath the graphs for 

triangle-3. 
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Shear stress 

Normal stress 

Figure 13. Propagation Test: Negatively Curved Fault Configuration N2. For shear stress, 

rectangle and triangle-4 perform about equally well, and both are better than triangle-2. For normal 

stress, rectangle performs much better than triangle-2 or triangle-4. We attribute the large errors in 

normal stress for triangular elements to the “corrugation” that occurs when triangulating the 

negatively-curved surface. Bear in mind that in the propagation test, the target elements are almost co-

planar with the adjacent source elements, so that small variations in strike and dip angles can produce 

large percentage errors in the normal stress. 
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Shear stress 

Normal stress 

Figure 14. Propagation Test: Negatively Curved Fault Configuration N4. For shear stress, 

triangle-2 and triangle-4 both perform better than rectangle. Also, there is a hint that the accuracy of 

rectangle may be leveling off at about 0.5 percent for the smallest elements tested. For normal stress, 

rectangle performs much better than triangle-2 or triangle-4, in a similar manner to configuration N2. 
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Shear stress 

Normal stress 

Figure 15. Propagation Test: Positively Curved Fault Configuration P2. For shear stress, rectangle 

out-performs both triangle-1 and triangle-3. For normal stress, rectangle, triangle-1, and triangle-3 all 

perform about equally well. The accuracy seems to be leveling off at about 1 percent. One possible 

explanation for why accuracy might level off is that as elements get smaller, they follow the surface 

more accurately (which tends to decrease error), but also their centroids are closer together (which 

tends to increase error). The normal stress results are very different than for the negatively-curved 

surface, where the triangular elements performed very poorly. The graphs for triangle-1 are difficult to 

see because they lie almost exactly underneath the graphs for triangle-3.
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Shear stress 

    Normal stress 

Figure 16. Propagation Test: Positively Curved Fault Configuration P3. For shear stress, rectangle 

out-performs both triangle-1 and triangle-3. For normal stress, rectangle, triangle-1, and triangle-3 

overall perform about equally well, although the rectangles are better in some ranges and the triangles 

are better in other ranges. There is a hint of leveling-off for the smallest element size tested. Again, we 

see normal stress results that are very different than for the negatively-curved surface, where triangles 

performed very poorly. The graphs for triangle-1 are difficult to see because they lie almost exactly 

underneath the graphs for triangle-3. 
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5. Conclusions 
 

We performed accuracy tests using both rectangular and triangular fault elements, on two curved fault 

surfaces: a negatively-curved fault in the shape of a helicoid, and a positively-curved fault in the shape of 

an ellipsoid. We performed three kinds of tests: a source test that measures the errors when a fault 

element acts as a dislocation source, a target test that measured the errors when a fault element acts as a 

target, and a propagation test that measures the errors in propagating a rupture from a slipping region into 

the immediately adjacent fault elements. 

 

In addition to comparing the performance of rectangles to triangles, we also compared the performance of 

two different triangulations. 

 

On the positively-curved fault, rectangles performed as well as or better than triangles in every test. In 

comparing the two triangulations, denoted triangle-1 and triangle-3, we found that the two triangulations 

performed equally well. 

 

On the negatively-curved fault, results were mixed. In comparing the two triangulations, denoted triangle-

2 and triangle-4, we found that triangle-4 performed better than triangle-2 in every test. In the source test, 

rectangles performed as well as triangle-4 when calculating shear stress. When calculating normal stress, 

rectangles were less accurate than triangle-4, but still more accurate than triangle-2. In the target test, 

rectangles were far more accurate than triangles, for both shear and normal stress. In the propagation test, 

when calculating shear stress, rectangles achieved the same accuracy as triangle-4 in one test, but were 

less accurate than triangle-2 in the other test. When calculating normal stress, rectangles were far more 

accurate than triangles. 

 

The poor performance of triangle-2 is noteworthy, because it is the simplest method of constructing a 

triangulation and so it is frequently used. 

 

Our overall conclusion is that in an earthquake simulator, rectangles should perform as well as triangles. 
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Submitted to SCEC on April 7, 2015 

 

 

Article Published This Year 

 

I published the following article, which describes my work in creating quantitative comparison 

metrics for the SCEC Dynamic Rupture Code Verification Group: 

 

Barall, M., and R.A. Harris (2015), Metrics for Comparing Dynamic Earthquake Rupture 

Simulations, Seismological Research Letters, vol. 86, no. 1, pages 223-235, doi: 

10.1785/0220140122. 

 

The article is available online at:  http://srl.geoscienceworld.org/content/86/1/223.full. 

 

 

 

 

Rough Fault with Viscoplasticity Benchmarks 

 

The SCEC Dynamic Rupture Code Verification Group created two benchmarks to test the 

performance of the dynamic rupture codes in modeling a fault with stochastic roughness: 

 

 TPV29 — Vertical rough fault in an elastic medium. 

 TPV30 — Vertical rough fault in a viscoplastic medium. 

 

Both benchmarks use a right-lateral strike-slip fault with stochastic roughness. Figure 1 shows 

the geometry and the material properties. Figure 2 shows the fault roughness, and the random 

process that is used to generate it. Measuring 40 km by 20 km, it is the largest fault in any of our 

benchmarks. The fault needs to be large for two reasons: because viscoplastic yielding builds up 

gradually as the rupture propagates, and because ample space is needed to let the effects of fault 

roughness play out. The model also includes gravitational loading, fluid pressure, and a depth-

dependent initial stress tensor specified throughout the model volume. The stress tensor is chosen 

so that the mean fault plane is the optimum plane for fracture (has the highest ratio of shear stress 

to normal stress). Considering that the recommended resolution is 50 m, it is one of our most 

challenging benchmarks to run. The full specification is on our website at 

http://scecdata.usc.edu/cvws/tpv29_30docs.html. 

 

It was my job to design and test these benchmarks. I wrote the code to create the rough fault 

surface, and generated several of them for testing. I performed about 70 dynamic rupture 

simulations to choose one of the rough surfaces, and select parameters and benchmark features. 

Tests were done using my own finite-element code, named FaultMod. Nucleation is done using a 

method I devised, which combines smoothed forced rupture with time-weakening. It took 

considerable effort to find a rough surface and parameters that were suitable for both elastic and 

viscoplastic materials; allowing both cases to propagate well and show clear effects of roughness 

on the rupture contours, without requiring excessively high numerical resolution. 
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Material properties are the only difference between TPV29 and TPV30, so that we can directly 

observe how viscoplasticity affects the results. Figure 3 shows rupture contours for both 

benchmarks, superimposed on the fault topography. In general, the viscoplastic rupture is more 

responsive to the roughness than the elastic rupture. 

 

Figures 4 and 5 show rupture contours from the participating modelers, superimposed to 

illustrate the level of agreement. In the elastic case the agreement is very good, while in the 

viscoplastic case one or two codes deviate a bit from the rest. The figures also show metrics that 

quantify the level of agreement between the codes, using the quantitative metrics that I designed 

(see Barall and Harris, SRL 2015). 

 

Figure 6 shows the on-fault stations, superimposed on the rupture contours. Modelers submit slip 

history at each on-fault station, so we attempted to select locations that are “interesting”. Figure 

6 shows an example of two stations which are only 300 meters apart, and yet, in the viscoplastic 

case, it takes 2 seconds for the rupture to propagate from one station to the other due to the 

roughness. Figure 7 compares the results from five codes during the 2-second pause. 

 

This year, for the first time, we are placing off-fault stations at a substantial distance from the 

fault. Modelers submit synthetic seismograms for these stations. Figure 8 shows the locations of 

off-fault stations for TPV29-30, with the most distant stations 20 km from the fault. Figure 9 

uses my quantitative metrics to demonstrate that the codes agree more poorly at the more-distant 

stations. Figure 10 shows waveforms (synthetic seismograms) for six participating codes, again 

showing that agreement worsens at the more-distant stations. 

 

Additional results from these benchmarks are described in my workshop presentations, which are 

available at http://scecdata.usc.edu/cvws/mar23_2015_presentations.html. 

 

In my role as one of the modelers, I uploaded a set of results which can be viewed in the web-

based comparison tool at http://scecdata.usc.edu/cvws/cgi-bin/cvws.cgi. 

 

After all the participating modelers submitted their results, it was my job to compare the results 

and present my analysis at our group workshop, which was held on March 23, 2015. 

 

 

 

 

Vertical Planar Fault in a 1D Velocity Structure Benchmarks 

 

The SCEC Dynamic Rupture Code Verification Group created two benchmarks to test the 

performance of the dynamic rupture codes in modeling a fault embedded in a stratified medium: 

 

 TPV31 — Discontinuous 1D velocity model, minimum 𝑉𝑆 = 2250 m/s. 

 TPV32 — Continuous 1D velocity model, minimum 𝑉𝑆= 1050 m/s. 
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Both benchmarks use a right-lateral strike-slip fault embedded in an elastic halfspace with a 1D 

velocity structure. Figure 11 shows the fault geometry Figure 12 shows the velocity structure for 

TPV31, which includes discontinuities at depths of 2.4 km, 5 km, and 10 km. Figure 13 shows 

the velocity structure for TPV32, which is continuous but also reaches very low velocities near 

the earth’s surface. Due to the low velocities, codes must use high resolution when running 

TPV32. In fact, TPV32 is our first benchmark where many codes had to use 25 m resolution to 

obtain acceptable results, making this benchmark very computationally challenging. The full 

specification is on our website at http://scecdata.usc.edu/cvws/tpv31_32docs.html. 

 

It was my job to design and test these benchmarks. I create the velocity structures, which are 

loosely based on the Loma Prieta velocity structure. I performed about 40 dynamic rupture 

simulations to select parameters and benchmark features. Tests were done using my own finite-

element code, named FaultMod. Nucleation is done by setting the initial shear stress to be 

slightly higher than the yield stress within a nucleation zone. 

 

Due to the very low velocities in TPV32, when I ran it I had to use 25 m elements adjacent to the 

fault, and 50 m elements in the uppermost 1 km of the entire model domain. This made my final 

tests of TPV32 the largest dynamic rupture simulations I have ever run. 

 

Figures 14 and 15 show rupture contours from the participating modelers, superimposed to 

illustrate the level of agreement. For both benchmarks, the agreement is excellent, with the 

contours from different modelers lying right on top of each other. The figures also show metrics 

that quantify the level of agreement between the codes, using the quantitative metrics that I 

designed (see Barall and Harris, SRL 2015). 

 

I used my quantitative metrics to perform a study of process zone width, expecting that the 

velocity models would have a substantial influence. The results shown in figures 16 and 17 

confirm this. There is good agreement among the participating codes on the width of the process 

zone. The width shrinks near the earth’s surface where velocities are low. For TPV31, the 

minimum width is about 200 m, indicating that 50 m numerical resolution should be sufficient. 

But for TPV32, which has much lower velocity, the minimum width is about 70 m, explaining 

why 25 m numerical resolution is barely enough. 

 

Figure 18 shows slip rate reported by 9 participating codes at the epicenter, and at a station 200 

m below the epicenter, for TPV32. Due to the very low velocities and small process zone widths, 

it is challenging to get good results at these stations. The codes exhibit some amount of 

disagreement and oscillation. Also, the waveforms at the two stations are quite different despite 

the fact that the stations are only 200 m apart. 

 

Figure 19 shows the location of off-fault stations, where modelers submit synthetic seismograms. 

This year for the first time we are placing stations far from the fault, and so stations are located 3 

km, 9 km, and 15 km away from the fault. Also new is that the stations are organized into 

“boreholes” with stations at depths of 0.0 km, 0.5 km, and 2.4 km, so that we can observe how 

the motions changes in the low-velocity zones near the earth’s surface. 
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Figure 20 shows the waveforms (synthetic seismograms) at different depths. For TPV31, which 

has constant velocity in the uppermost 0.5 km, there is little difference between the stations at 

0.0 and 0.5 km depth, although both of these have considerably higher peak velocity than at 2.4 

km depth. In contrast, for TPV32, which has sharply decreasing velocity in the uppermost 0.5 

km, the station at 0.0 km depth has much higher peak velocity than at 0.5 km depth, which 

demonstrates the “amplification” effect of the low-velocity layer. 

 

Figure 21 shows examples of waveforms (synthetic seismograms) for TPV32, produced by 8 

participating codes, at distances of 3 km and 15 km from the fault. Agreement among the codes 

deteriorates noticeably at the more distant station. 

 

Additional results from these benchmarks are described in my workshop presentations, which are 

available at http://scecdata.usc.edu/cvws/mar23_2015_presentations.html. 

 

In my role as one of the modelers, I uploaded a set of results which can be viewed in the web-

based comparison tool at http://scecdata.usc.edu/cvws/cgi-bin/cvws.cgi. 

 

After all the participating modelers submitted their results, it was my job to compare the results 

and present my analysis at our group workshop, which was held on March 23, 2015. 

 

 

 

 

Performance of Triangular Fault Elements in Earthquake Simulators 

 

This is a new project that I performed with co-PI Terry Tullis (project number 14090). 

 

An earthquake simulator is a computer program that generates a synthetic earthquake catalog 

spanning thousands of years, or longer. Most of the computational effort in an earthquake 

simulator goes into computing how slip on one part of a fault affects stresses on other parts of the 

fault, and on other faults. The computation is done by discretizing the fault system into a large 

number of fault elements, and using Greens functions to determine how a pattern of slip on some 

fault elements affects the stresses on all the fault elements. 

 

Traditionally, earthquake simulators have used rectangular fault elements, chosen so that the 

Okada Greens functions can be used. Recently, due to the development of new Greens functions 

for triangular dislocations, it has become practical to use triangular fault elements (Meade 2007; 

Gimbutas et al. 2012). The purpose of this project is to assess the accuracy of stress calculations 

performed with triangular fault elements, as compared to the accuracy of the same calculations 

done with rectangular fault elements. 

 

Because triangles can represent curved fault geometry more accurately than rectangles, one 

intuitively expects that stress calculations performed with triangles should be more accurate than 

stress calculations done with rectangles. The original motivation for this project was to 

demonstrate that this intuitive expectation is true, and quantify the difference in accuracy. 
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However, our results are contrary to the intuitive expectation. In our tests, triangles are not 

superior to rectangles. One or the other may be superior in a particular case, but, overall, 

rectangles perform as well as or better than triangles. Another unexpected result is that one 

triangulation of a fault surface may perform significantly better than another triangulation with a 

different pattern of triangles. 

 

To test the performance of triangular fault elements, I created two fault surfaces, one with 

negative curvature and one with positive curvature. The negatively-curved surface is motivated 

by the shape of the San Andreas Fault in southern California (Fuis et al. 2012). It is a strike-slip 

fault in the shape of a helicoid, as shown in figure 22. The positive-curved surface is motivated 

by the shape of the Cascadia subduction fault (McCrory et al. 2012). It is a thrust fault in the 

shape of an ellipsoid, and shown in figure 23. 

 

I wrote a computer program to create triangulations and rectangulations of each fault surface. 

Using that program, I discretized each fault surface in three different ways: one pattern of 

rectangular elements, and two different patterns of triangular elements. This was repeated in each 

of six different element sizes. Figures 24 and 25 show the discretizations. In this way, I can 

compare not only rectangles to triangles, but also the two different triangulations. 

 

Our strategy is to impose uniform slip on part of the fault surface, called the source region, and 

then compute the induced shear and normal stresses elsewhere on the fault surface, called the 

target region. Figures 26 and 27 show the source and target regions I used. In some cases, the 

target region borders on the source region; while in other cases the target region is 4.8 km away 

from the source region. The former case is relevant for the simulation of rupture propagation 

during an earthquake, because the earthquake rupture proceeds from the currently-slipping 

elements to their neighboring elements. The latter case is relevant for examining the accuracy of 

stress transfer over larger distances. We chose a separation of 4.8 km because it is roughly the 

maximum size of a fault-to-fault jump (Wesnousky 2006). 

 

To assess the accuracy of the calculation, we discretize the fault surfaces using either rectangles 

or triangles, each in six different sizes: 300, 600, 1200, 2400, 4800, and 9600 meters. The 300 m 

results are taken as the reference solution, and the accuracy of the other five sets of results is 

assessed by how well they approximate the reference value. 

 

I defined three different accuracy tests: 

 

1. A source test which evaluates the error originating at the source elements. This test is 

performed using a source region and target region that are separated by 4800 meters. We 

vary the discretization of the source region, using either triangles or rectangles with sizes 

ranging from 600 to 9600 m. The discretization of the target region is held fixed. 

 

2. A target test which evaluates the error originating at the target elements. This test is also 

performed using a source region and target region that are separated by 4800 meters. The 

discretization of the source region is held fixed. We vary the discretization of the target 

region, using either triangles or rectangles with sizes ranging from 600 to 9600 m. 
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3. A propagation test which evaluates errors occurring during rupture propagation. This test 

is performed using a target region that borders on the source region, with no separation. 

We vary the discretization of both the source region and the target region, using either 

triangles or rectangles with sizes ranging from 600 to 9600 m. The source and target 

regions are discretized in the same way (e.g., if one is 1200 m triangles then so is the 

other), as would be the case in a simulator. 

 

I ran all the tests, and graphed the results. A few of the resulting graphs are shown in figures 28 

to 31. The graphs show how the accuracy of the stress calculation varies as the size of the fault 

elements is varied. There are separate graphs for shear stress and normal stress. 

 

Each graph is a log-log plot, in which the approximation error, in percent, is plotted against the 

number of fault elements. The number of fault elements is the right thing to use on the horizontal 

axis, because the number of fault elements is what determines the computational effort that a 

simulator must exert to calculate the stress transfer. There are three curves on each plot: a blue 

curve that shows results for rectangular fault elements, and red and green curves that show 

results for triangular fault elements. The red and green curves correspond to two different 

methods for constructing the triangulation. 

 

Examining all the graphs, I formed the following conclusions: 

 

 On the positively-curved fault, rectangles performed as well as or better than triangles in 

every test. In comparing the two triangulations, denoted triangle-1 and triangle-3, we 

found that the two triangulations performed equally well. 

 

 On the negatively-curved fault, results were mixed. In comparing the two triangulations, 

denoted triangle-2 and triangle-4, we found that triangle-4 performed better than triangle-

2 in every test. In the source test, rectangles performed as well as triangle-4 when 

calculating shear stress. When calculating normal stress, rectangles were less accurate 

than triangle-4, but still more accurate than triangle-2. In the target test, rectangles were 

far more accurate than triangles, for both shear and normal stress. In the propagation test, 

when calculating shear stress, rectangles achieved the same accuracy as triangle-4 in one 

test, but were less accurate than triangle-2 in the other test. When calculating normal 

stress, rectangles were far more accurate than triangles. 

 

The poor performance of triangle-2 is noteworthy, because it is the simplest method of 

constructing a triangulation and so it is frequently used. 

 

Our overall conclusion is that in an earthquake simulator, rectangles should perform as well as 

triangles. 

 

Finally, I wrote the project report. The report, which is available in the SCEC project reports 

database, provides many more details and results. 
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TPV29 uses linear elastic material: 

Density  𝜌 = 2670 kg/m
3
 

Shear-wave velocity  𝑉𝑆 = 3464 m/s 

Pressure-wave velocity  𝑉𝑃 = 6000 m/s 

 

 

TPV30 uses viscoplastic material: 

Density  𝜌 = 2670 kg/m
3
 

Shear-wave velocity  𝑉𝑆 = 3464 m/s 

Pressure-wave velocity  𝑉𝑃 = 6000 m/s 

Cohesion  𝑐 = 1.18 MPa 

Bulk friction  𝜈 = 0.1680 

Relaxation time  𝑇𝑣 = 0.05 s 

 

 

Figure 1. Geometry and material properties for the rough fault with viscoplasticity benchmarks. 

TPV29 is set in an elastic halfspace. TPV30 is set in a Drucker-Prager viscoplastic halfspace. 

Both benchmarks use a vertical, right-lateral, strike-slip fault with stochastic roughness. 
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Figure 2. Rough-fault topography used for benchmarks TPV29 and TPV30. Note that relief is 

exaggerated in the image. The fault roughness is self-similar, with Hurst exponent H=1. It is 

constructed using a Fourier transform technique: 

 

1. Begin with a square region, 400 km on a side, gridded at 25 m resolution. 

2. Working in the frequency domain, each Fourier coefficient with wavelength between 

1,000 m and 40,000 m is assigned a value proportional to 𝑘−(𝐻+1) and a random complex 

phase, where 𝑘 is the wavenumber. 

3. Perform a Fourier transform to get the fault roughness in the spatial domain. 

4. Cut out an arbitrarily-chosen region the size of the fault surface. 

5. Apply a moving-average filter, using a 2D filter kernel with a cosine shape and a half-

width of 1,000 m. 

 

You can think of the fault roughness as being a linear superposition of sine waves, each with 

random phase. The sine waves have wavelengths ranging from 1,000 m to 40,000 m, and 

amplitude proportional to the square of the wavelength. 
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Figure 3. Rupture contours for TPV29 (elastic case) and TPV30 (viscoplastic case), 

superimposed on the fault topography. The image shows the rupture fronts, at intervals of 0.5 

seconds. There is clearly some correlation between rupture contours and fault topography, but it 

is difficult to look at the fault topography and predict what the rupture will do. The viscoplastic 

case (red contours) is more responsive to the fault roughness. 
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(1) (2) (3) (4) (5) (6) (7) (8) 

(1) bai   19.6 30.6 8.0 15.6 7.8 30.0 10.7 

(2) barall.2 19.6   21.4 22.1 25.7 21.4 37.0 23.3 

(3) dliu.2 30.6 21.4   32.1 36.7 31.2 48.8 33.5 

(4) duru.2 8.0 22.1 32.1   15.4 5.5 30.4 7.6 

(5) gabriel 15.6 25.7 36.7 15.4   15.3 22.3 15.7 

(6) kozdon 7.8 21.4 31.2 5.5 15.3   30.0 9.3 

(7) ma.2 30.0 37.0 48.8 30.4 22.3 30.0   28.6 

(8) shi.2 10.7 23.3 33.5 7.6 15.7 9.3 28.6   

 

Figure 4. TPV29 (elastic case) rupture contours from 8 participating modelers, superimposed to 

demonstrate very good agreement between the codes. The table shows the RMS difference in 

rupture time, in milliseconds, between any pair of codes.  
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  (1) (2) (3) (4) (5) (6) 

(1) barall.2   46.8 9.6 9.4 62.4 9.6 

(2) dliu.3 46.8   40.2 45.0 82.3 45.4 

(3) duru.2 9.6 40.2   7.2 62.9 11.8 

(4) kozdon 9.4 45.0 7.2   61.5 13.3 

(5) ma.2 62.4 82.3 62.9 61.5   59.0 

(6) shi 9.6 45.4 11.8 13.3 59.0   

 

Figure 5. TPV30 (viscoplastic case) rupture contours from 6 participating modelers, 

superimposed to illustrate agreement between the codes. Rupture contours are plotted at intervals 

of 0.5 seconds. Four of the codes agree very well; the other two deviate from the rest at the top 

and lower-right parts of the fault. The table shows the RMS difference in rupture time, in 

milliseconds, between any pair of codes. Generally, we regard values less than 50 ms to be 

reasonably good; two of the codes have disagreements that are consistently close to or exceeding 

50 ms. 
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Figre 6. Top: Locations of on-fault stations, shown as green stars, superimposed on the rupture 

contours. We attempted to choose “interesting” locations. Bottom: Horizontal slip rate, for the 

two circled stations, in TPV30 (viscoelastic case). The stations are only 300 m apart, yet it takes 

2 seconds for the rupture to propagate from one to the other. Black curve is for the first (left) 

station, and shows an initial pulse, followed by a 2-second pause. Red curve is for the second 

(right) station, showing no movement until after the pause.  
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Figure 7. Horizontal slip rate for 5 participating codes, at the first (left) station identified in 

figure 6. Codes agree very well during the initial pulse. As slip resumes at the end of the pause, 

there is some disagreement between the codes. 
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Figure 8. Locations of off-fault stations for benchmarks TPV29-30. The figure shows station 

locations on the earth’s surface, in map view. This year, for the first time, we are placing off-

fault stations far from the fault. Here, the most distant stations are 20 km from the fault. 
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Figure 9. Metric values for off-fault stations in TPV29-30. Lower values indicate better 

agreement among the codes. The top two tables show metrics for TPV29 (elastic case); the “3d-

vel” column shows the average metric for 3D velocity among the participating codes, and the “5 

codes” column shows the same for the five best-agreeing codes. The bottom two tables show 

metrics for TPV30 (viscoplastic case). In each case, the table on the left is for stations 3 km from 

the fault, and the table on the right is for stations 20 km from the fault. In each case, agreement is 

significantly worse for the stations 20 km from the fault. 
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Figure 10. Waveforms (synthetic seismograms) for TPV29 for 6 participating codes. The top 

figure is for a station 3 km from the fault, and the bottom figure is for a station 20 km from the 

fault. It is evident that agreement among the codes worsens at the more-distant station. 
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Right-lateral strike-slip fault in an elastic half-space with a 1D velocity structure. 

 

TPV31 — Discontinuous 1D velocity model, minimum 𝑉𝑆 = 2250 m/s. 

 

TPV32 — Continuous 1D velocity model, minimum 𝑉𝑆 = 1050 m/s. 

 

 

 

Figure 11. Geometry and material properties for the 1D velocity structure benchmarks. TPV31 

is set in an elastic halfspace with a discontinuous velocity structure. TPV32 is set in an elastic 

halfspace with a continuous velocity structure. Both benchmarks use a vertical, planar, right-

lateral, strike-slip fault. 
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Figure 12. Velocity structure for TPV31. Notice the discontinuities at depths of 2.4 km, 5 km, 

and 10 km. 
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Figure 13. Velocity structure for TPV32. Notice that the velocity structure is continuous, and 

that it reaches very low velocity at the earth’s surface. 
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  (1) (2) (3) (4) (5) (6) (7) (8) (9) 

(1) bai   3.8 13.8 2.5 16.0 3.0 8.4 3.4 14.1 

(2) barall.2 3.8   14.0 4.7 16.1 5.8 6.8 6.3 13.9 

(3) bydlon.2 13.8 14.0   11.8 2.6 13.7 9.1 12.2 2.2 

(4) kaneko 2.5 4.7 11.8   13.9 3.2 7.4 2.2 12.1 

(5) kozdon 16.0 16.1 2.6 13.9   15.8 11.2 14.2 2.8 

(6) luo.2 3.0 5.8 13.7 3.2 15.8   9.5 2.7 14.2 

(7) ma.2 8.4 6.8 9.1 7.4 11.2 9.5   9.0 8.9 

(8) roten.2 3.4 6.3 12.2 2.2 14.2 2.7 9.0   12.7 

(9) shi.2 14.1 13.9 2.2 12.1 2.8 14.2 8.9 12.7   

 

Figure 14. TPV31 (discontinuous case) rupture contours from 9 participating modelers, 

superimposed to demonstrate excellent agreement between the codes. The table shows the RMS 

difference in rupture time, in milliseconds, between any pair of codes. Note the bends in the 

contours at depths where the velocity structure is discontinuous: 2.4 km, 5 km, and 10 km.  
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  (1) (2) (3) (4) (5) (6) (7) (8) (9) 

(1) bai   3.4 12.3 2.1 15.3 2.6 4.9 3.2 13.1 

(2) barall 3.4   13.3 4.3 16.4 5.0 4.5 6.0 13.8 

(3) bydlon.2 12.3 13.3   11.0 9.0 12.6 10.1 11.2 8.1 

(4) kaneko 2.1 4.3 11.0   13.5 3.0 4.1 2.2 11.4 

(5) kozdon 15.3 16.4 9.0 13.5   15.3 12.6 13.2 3.2 

(6) luo 2.6 5.0 12.6 3.0 15.3   6.0 2.6 13.3 

(7) ma.2 4.9 4.5 10.1 4.1 12.6 6.0   5.6 10.0 

(8) roten 3.2 6.0 11.2 2.2 13.2 2.6 5.6   11.5 

(9) shi 13.1 13.8 8.1 11.4 3.2 13.3 10.0 11.5   

 

Figure 15. TPV32 (continuous, low-𝑉𝑆 case) rupture contours from 9 participating modelers, 

superimposed to demonstrate excellent agreement between the codes. The table shows the RMS 

difference in rupture time, in milliseconds, between any pair of codes. Note that the rupture 

contours are smooth, and refract (become near-horizontal) near the earth’s surface.  
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Figure 16. Process zone width for TPV31 (discontinuous case, min 𝑉𝑆 = 2250 m/s). The table 

shows the process zone width in meters for each of 9 participating codes, at 10 on-fault stations 

of varying depth. Station depth is indicated by the last three digits of the station name. Reading 

from the top, the depths of the stations are 0.0, 0.2, 0.5, 1.0, 2.4, 3.0, 5.0, 7.5, 10.0, and 12.0 km. 

As shown by the horizontal bands of color, the codes agree well on the width of the process 

zone. The process zone width gets smaller as one approaches the earth’s surface, where velocity 

is lower. The smallest widths are about 200 m, indicated that this benchmark should be 

resolvable with a 50 m mesh. 
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Figure 17. Process zone width for TPV32 (continuous case, min 𝑉𝑆 = 1050 m/s). The table 

shows the process zone width in meters for each of 9 participating codes, at 10 on-fault stations 

of varying depth. Station depth is indicated by the last three digits of the station name. Reading 

from the top, the depths of the stations are 0.0, 0.2, 0.5, 1.0, 2.4, 3.0, 5.0, 7.5, 10.0, and 12.0 km. 

As shown by the horizontal bands of color, the codes agree well on the width of the process 

zone. Near the earth’s surface, process zone widths are much smaller than TPV31, due to the 

lower velocity. The smallest width is about70 m, indicating that a 25 m mesh is barely enough to 

resolve this benchmark. 
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Figure 18. TPV32 waveforms for slip rate, at the epicenter (top graph), and at a station 200 m 

below the epicenter (bottom graph). It is challenging to get good results at these stations, as 

indicated by some disagreement among the code and some spurious oscillations. Note that the 

waveforms are quite different even though the stations are only 200 m apart. 
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Figure 19. Off-fault stations for TPV31-32. The figure shows station locations on the earth’s 

surface, in map view. This year, for the first time, we are placing off-fault stations far from the 

fault. Here, there are stations located 3 km, 9 km, and 15 km from the fault. Also new is that the 

stations are organized into 6 “boreholes” with stations at depths of 0.0, 0.5, and 2.4 km, to 

explore how the synthetic seismograms vary with depth in the 1D velocity structure. 
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Figure 20. Synthetic seismograms for stations located 3 km from the fault. The left column is for 

TPV31, the right column for TPV32. The three rows are the horizontal (fault-parallel), normal, 

and vertical components of motion. Black curves are for the earth’s surface, red for a depth of 

0.5 km, and green for a depth of 2.4 km. For benchmark TPV31, the black and red curves are 

quite similar, but the green curves show less motion. For benchmark TPV32, the black curves 

have much higher peaks than the red curves, illustrating that the lower velocity in TPV32 

amplifies the motion at the earth’s surface. 
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Figure 21. TPV32 synthetic seismograms at the earth’s surface, for stations located 3 km from 

the fault (top graph) and 15 km from the fault (bottom graph). Due to the low velocity at the 

earth’s surface, codes are in good but not perfect agreement at 3 km. Noticeable disagreements 

among the codes appear at 15 km. 
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Figure 22. Negatively-curved fault surface, for testing the performance of triangular fault 

elements in earthquake simulators. The surface is a section of a helicoid. All dimensions are in 

meters. The fault trace is a straight line, at 𝑥 = 0, extending from 𝑦 = −19200 to 𝑦 = +19200. 

Fault dip is −45 degrees at one end of the fault, and +45 degrees at the other end of the fault. Dip 

is 90 degrees in the center of the fault, at 𝑦 = 0. The fault extends from the earth’s surface at 

𝑧 = 0, to a maximum depth of 𝑧 = −19200. This is a strike-slip fault. Grid lines are contours of 

constant depth (𝑧) and contours of constant distance-along-strike (𝑑), and do not represent fault 

elements. 
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Figure 23. Positively-curved fault surface, for testing the performance of triangular fault 

elements in earthquake simulators. The surface is a section of an ellipsoid. All dimensions are in 

meters. The fault trace is a curve, whose strike angle varies from −30 degrees to +30 degrees. 

Fault dip is 10 degrees at the top center of the fault, and 30 degrees at the bottom center of the 

fault. The fault extends from the earth’s surface at 𝑧 = 0, to a maximum depth of approximately 

𝑧 = −11065. This is a dip-slip (thrust) fault. Grid lines are contours of constant depth (𝑧) and 

contours of constant distance-along-strike (𝑑), and do not represent fault elements. 
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Figure 24. Discretization patterns for the negatively-curved (helicoidal) fault surface. The figure 

shows three different ways that a portion of the fault surface is partitioned into fault elements. 

The three methods are “rectangle”, “triangle-2”, and “triangle-4”. For the “rectangle” method, 

the figure shows the fault elements as non-planar quadrilaterals, before they are converted into 

perfect rectangles. Conversion into perfect rectangles will create gaps and overlaps between 

adjacent rectangular fault elements. The figure is not to scale. 
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Figure 25. Discretization patterns for the positively-curved (ellipsoidal) fault surface. The figure 

shows three different ways that a portion of the fault surface is partitioned into fault elements. 

The three methods are “rectangle”, “triangle-1”, and “triangle-3”. For the “rectangle” method, 

the figure shows the fault elements as non-planar quadrilaterals, before they are converted into 

perfect rectangles. Conversion into perfect rectangles will create gaps and overlaps between 

adjacent rectangular fault elements. Note that unlike on our negatively-curved surface, the 

“rectangle” method does not produce a checkerboard pattern. The figure is not to scale. 
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Figure 26. Source and target configurations for the negatively-curved (helicoidal) fault surface. 

The four configurations are designated N1 through N4. The source region is shown in red, and 

the target region is shown in green. The target region is a strip one element thick; the figures 

assume an element size of 1200 m. Grid lines are contours of constant depth (𝑧) and contours of 

constant distance-along-strike (𝑑), and do not represent fault elements. 
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Figure 27. Source and target configurations for the positively-curved (ellipsoidal) fault surface. 

The three configurations are designated P1 through P3. The source region is shown in red, and 

the target region is shown in green. The target region is a strip one element thick; the figures 

assume an element size of 1200 m. Grid lines are contours of constant depth (𝑧) and contours of 

constant distance-along-strike (𝑑), and do not represent fault elements. 
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Source Test: Negatively Curved Fault Configuration N1 

 

 

 
 

Figure 28. Source test on the negatively-curved (helicoidal) fault surface. The vertical axis is 

approximation error, in percent; lower values are better. For shear stress, rectangle and triangle-4 

perform about equally well, and both are better than triangle-2. For normal stress, triangle-4 is a 

little better than rectangle, which in turn is much better than triangle-2. 
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Target Test: Positively Curved Fault Configuration P1 

 

 

 
 

Figure 29. Target test on the positively-curved (ellipsoidal) fault surface. The vertical axis is 

approximation error, in percent; lower values are better. Rectangle out-performs both triangle-1 

and triangle-3, for both shear and normal stress, except for one anomalous point on the normal 

stress plot.  
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Propagation Test: Negatively Curved Fault Configuration N2 

 

 

 
 

Figure 30. Propagation test on the negatively-curved (helicoidal) fault surface. The vertical axis 

is approximation error, in percent; lower values are better. For shear stress, rectangle and 

triangle-4 perform about equally well, and both are better than triangle-2. For normal stress, 

rectangle performs much better than triangle-2 or triangle-4. We attribute the large errors in 

normal stress for triangular elements to the “corrugation” that occurs when triangulating the 

negatively-curved surface. Bear in mind that in the propagation test, the target elements are 

almost co-planar with the adjacent source elements, so that small variations in strike and dip 

angles can produce large percentage errors in the normal stress.  
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Propagation Test: Positively Curved Fault Configuration P2 

 

 

 
 

Figure 31. Propagation test on the positively-curved (ellipsoidal) fault surface. The vertical axis 

is approximation error, in percent; lower values are better. For shear stress, rectangle out-performs 

both triangle-1 and triangle-3. For normal stress, rectangle, triangle-1, and triangle-3 all perform about 

equally well. The accuracy seems to be leveling off at about 1 percent. One possible explanation for why 

accuracy might level off is that as elements get smaller, they follow the surface more accurately (which 

tends to decrease error), but also their centroids are closer together (which tends to increase error). The 

normal stress results are very different than for the negatively-curved surface, where the triangular 

elements performed very poorly. 
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