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Introduction 
 
The Uniform California Earthquake Rupture Forecast 3 (UCERF3; Field et al., 2013) improved on 
previous rupture forecast models (Field et al., 2009) by relaxing the assumption of segmentation on 
major faults and by allowing ruptures to jump from one fault to another.  The rupture forecast is 
expressed in terms of the estimated rates of individual ruptures.  Each rupture is unique and 
constructed of some number of fault subsections under plausibility rules (Milner et al., 2013).  A 
“Grand Inversion” estimates the rates of each rupture using a Monte Carlo method to fit slip rate on 
each subsection, paleoseismic event rates, and regional seismicity constraints. 
 
To construct ruptures, the plausibility rules are applied only between adjacent pairs of subsections.  
No distinction is made between subsection pairs that barely pass versus pairs that are touching and 
highly aligned.  For example, a rupture containing subsections separated by 4 km is considered just 
as likely to occur in the input to the Grand Inversion as a rupture with no steps or bends in it.   Thus 
the UCERF3 solution has been developed without making use of geologic information about relative 
rupture probability that might be gleaned from rupture geometry.  This project develops empirical 
estimates of relative rupture probability from geometry and compares them to UCERF3 solution 
rates.  We find a very limited correspondence between UCERF3 rupture rates and predictions from 
rupture complexity.   
 
Empirical Rupture Probabilities from Geometric Complexity 
 
Two types of structures in ruptures contribute to empirical rupture complexity.  The first type is 
based on separation distance between subsections.  Kinematic and dynamic modeling both find that 
steps in a rupture hinder rupture propagation (e.g., Lozos et al., 2011; Oglesby, 2005, 2008).  The 
second type of complexity comes from fault bends and changes in rake.  At these transitions, 
momentum in fault rupture is reduced by the change direction and by an increase in effective 
friction.  The relationships of both types of complexity to probability are described in Biasi et al. 
(2013); preliminary results were presented in Biasi (2013).   
 
We consider three distance-related types of probability estimates for separations between 
subsections within a rupture.  All ruptures begin with unit probability of occurrence.  The empirical 
predicted rate is reduced by some factor for each instance in a rupture where consecutive subsections 
are separated by some minimum distance.  Applied to full ruptures, rupture probability Pr depends 
on separation distance between ruptures, d as: 
 
 Equation 1.   Pr = Πps,s+1(d)          



 
 
where the product is formed over consecutive subsections s,s+1 in the rupture.  The first distance-
related type penalizes ruptures for steps of 1 km or larger.  Empirical observations of strike slip 
ruptures find that steps of 1 km or larger are crossed approximately half the time (Wesnousky and 
Biasi, 2011).  Estimates from a larger data set (Wesnousky et al., in prep) find similar rates for dip 
slip ruptures. of 0.5 for each step greater than 1 km.   In Equation 1 the step penalty, ps,s+1 = { 1 if d 
<1 km; 0.5 if d ≥ 1 }.  Two distance-related models reduce the probability of the rupture depending 
on the actual value of the separation.  The exponential model, p(d) = e-d/r0, where r0 is a constant.   
Here we use r0=1.44 so p(d) matches the step probability at 1 km.  It has the property of causing 
small decreases in probability of through-going rupture for any non-zero separation distance.  Finally 
we consider a direct distance weighting, p(d) = 1/dn, applied only to d>1.0 km.  This model assigns 
no penalty for steps less than 1 km in width, but increases more steeply for larger steps.	  
 
Two penalty models were considered for the angle in three dimensions between the slip orientations 
of adjoining subsections (Figure 1).  For each pair in a rupture, the cosine of the angle θ between slip 
vectors is calculated.  The angle cos-1(abs(θ)) is used in Figure 1 to obtain the probability ps,s+1 that 
rupture would continue beyond the bend. The absolute value corrects for cases where the strike is the 
same but the dip direction changes by 180 degrees on near vertical faults.  The two curves in Figure 
1 bound results by Lozos et al. (2011) that explore parametrically the extension of rupture from a 
strike-slip onto a transfer structure at various angles to the incoming strand.  The range between the 
two models relates to whether the regional stress is aligned with the incoming strand or is favorably 
oriented for slip on the transfer structure.  Both models have no penalty for subsection pairs s, s+1 
where slip vectors are parallel.  Both require a steep penalty if slip must continue at a high angle to 
the incoming slip, such as when a steep reverse fault joins a strike slip fault.  In order not to force 
results with the angle dependence model, the “Easy” model of Figure 1 is used in the results section 
below. 
 

 
Figure 1.  Probability model for rupture continuing 
through a fault bend based on the 3-D angle between 
slip vectors.   The probability for the rupture is the 
product of continuing computed for all subsection 
pairs.  The red line represents a “stiff” penalty for slip 
angle changes; the blue line is “easy”. Available 
modeling results (Lozos et al., 2011) generally fall 
between the two models.  The “easy” model is used in 
this report.  
 
 
 
 
 
 

 
 
Net probability predictions from geometry are calculated as in Equation 1 by the product of 
probabilities considered pairwise among subsections in the rupture.  Because of the flat initial 
portion of the “Easy” curve in Figure 1, ruptures of hundreds of km long can have net penalties of 
less than 0.5.  Separation distances and angle changes both reduce the actual likelihood of a rupture 
occurring, so they are combined in the empirical rupture probabilities below. 
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Results 
 
Rupture probability from the Grand Inversion (GI) depends primarily on slip rates of subsections in 
the rupture.  Because of that, a geometrically simple rupture with a high empirical geometric 
probability could have a high or low rate from the GI.    Rates can be compared, however.  In Figure 
2, we compare GI rates to empirical rates using the set of UCERF3 FM3.1 ruptures 80-100 km long.  
The red line shows the normalized plot of log annual rates from the GI (x-axis “Rupture Rates”) for 
the full set.  Because it is a full set, it necessarily includes ruptures on both high and low slip rate 
faults.  We then find the ruptures with log-empirical probabilities of -1.2 to -0.8 – that is, ruptures 
judged a priori from their complexity to be an order of magnitude less likely than straight, simply 
connected ruptures.  The GI probabilities for the complex rupture subsets are plotted as new 

distributions, one each for angle+exp(d/ro), angle+step 
penalty, and angle+(1/d2) empirical probability models.  If 
the GI reduced probabilities on complex ruptures by an 
amount similar to the empirical prediction, then the three 
curves would be offset to the left by an order of magnitude.  
As it is, there is no penalty in the GI for rupture 
complexity.    
 
Figure 2.  GI probabilities for ruptures 80-100 km long.  
Red is all from FM3.1 in this set.  Other curves are the GI 
probabilities for the fraction considered complex ruptures 
by three empirical models of complexity.  The GI does not 
penalize ruptures in the subset for their complexity. 

 
Figure 3.  GI probabilities for all ruptures 80-100 km 
long and for subsets judged two orders of magnitude more 
improbable because of their complexity. 
 
 
At a log-empirical probability of -2 ruptures are extremely 
complex, at the level of, for example, three steps greater 
than 1 km plus two slip direction changes of 45 degrees.  
Figure 3 shows GI probabilities for this set are lower than 
the full set, although by 1 order of magnitude instead of 
the predicted 2.  Some of the observed offset could be 
because of bias in the sample.  Extremely complex 
ruptures are generally concentrated on low slip rate faults.  

A normalization by slip rate (future work!) could help tease out the slip rate contribution.  
 
Figures 4 and 5 are plotted to investigate correlations between rupture complexity and GI rate 
estimates.  Points are GI inversion results for individual ruptures.  Only 1 in 20 is plotted to reduce 
the amount of overprinting.  The vertical axes are two empirical complexity measures, one 
penalizing any separation distance by exp(d/r0), and the other applying and 0.5 penalty for steps 
greater than 1 km.  Rupture subsets are color coded by length to look for systematic effects.  In both 
Figures 4 and 5, if the GI reduced rupture probability (annual rate) by a similar amount to the 
empirical complexity estimates, the log-average rate summaries (heavy lines with “+” symbols) 
would descend to the left with a unity slope.  A weak correlation is observed for ruptures of 60 to 
140 km long, but at about half the predicted rate.  Some degree of correlation is expected because the 
samples of complex ruptures are biased toward low slip rate faults.  The poor correlation of GI 
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occurrence rate with the empirical rate from rupture geometry indicates that the GI is not materially 
penalizing ruptures for complexity.  Ruptures with unlikely shapes are used at similar rates with 
simpler rupture topologies.  In terms of the earthquake rate forecast as a whole, at some level, 
improbable and complex ruptures are absorbing slip rate and rupture frequency that a more complete 
model would concentrate on simpler ruptures.  How important this effect is for hazard estimates 
remains to be seen. 
 

 
 
 
Figure 4:  Geometric 
complexity vs. UCERF3 
solution rate for ruptures 
shorter than 200 km.   
Complexity measure = 
exp(r/r0)*dot-product of slip 
vector between subsections.  
Dots are individual rupture 
probabilities.  Only 1 in 20 
are plotted to keep them from 
overprinting.  UCERF3 
ruptures are binned by length 
(colors) and by rupture 
geometric complexity (lines 
with “+” symbols.  A slope of 
1 would mean that UCERF3 
downweights  complex 

ruptures at a rate comparable to the geometric prediction.   This is not observed except for ruptures 
shorter than ~140 km and complexity probability less than about a factor of 3 (exp(-0.5)). 
 

 
 
Figure 5.  Same as Figure 4, 
but geometric complexity 
estimated by a penalty of 0.5 
for each separation between 
subsections that is greater 
than 1.0 km.  UCERF3 
probabilities follow the 
geometric prediction to ~-1.5 
before becoming indifferent 
to additional complexity. 
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Conclusions 
 
It is not surprising that the Grand Inversion is relatively insensitive to rupture complexity since no 
“complexity” data  were provided as inputs.  In mechanical modeling, complex geometry is a 
recognized and physically meaningful influence on the probability of through-going rupture.  That 
role is recognized as well in observational geology.  We find that well-posed empirical 
improbabilities (penalties) can be estimated a priori for ruptures on the UCERF3 fault geometry.   
 
Two applications of the empirical probability approach are suggested.  First is as an additional 
constraint set for the Grand Inversion.  If complex ruptures are less probable in the real world, an 
equation set can be constructed to implement it.  Second, empirical probabilities can be used to trim 
the rupture set.  At some level of complexity, rupture rates drop to the point of not being hazard 
significant.   Rupture construction rules in UCERF3 were recognized as consciously inclusive, 
needing only to pass a “laugh test”.  Empirical probabilities go a step further than just plausibility, 
testing rupture realism using rapid and physically meaningful criteria. 
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