
Andrew M. Bradley (ambrad@cs.stanford.edu) and Paul Segall (PI; segall@stanford.edu)
SCEC 2013 Report

March 11, 2014

1 Abstract

dc3dm is a software package that efficiently forms and applies the linear operator relating quasistatic dislocation and
traction components on a nonuniformly discretized rectangular fault with rectangular elements in a homogeneous
elastic (HE) half space. This linear operator implements what is called the displacement discontinuity method
(DDM).

The key properties of dc3dm and the algorithms it implements are: 1. The mesh can be nonuniform. 2. Work
and memory scale roughly linearly in the number of elements (rather than quadratically). 3. The order of accuracy
(OOA) on a nonuniform mesh is the same as that of the standard method on a uniform mesh.

Property 2 is achieved using our package hmmvp, which implements hierarchical-matrix (H-matrix) compression.
A nonuniform mesh (property 1) is natural for some problems. For example, in a rate-state friction simulation,

nucleation length, and so required element size, scales reciprocally with effective normal stress, and the factor
difference between smallest and largest required element sizes is frequently 16 to 100 by area.

On a uniform mesh, straightforward application of a constant-slip Green’s function (GF) yields a DDM we refer
to as DDMu. On a nonuniform mesh, this same procedure leads to artifacts that degrade the OOA of DDMu. We
have developed a method we call IGA that implements the DDM using linear combinations of the same GF for a
nonuniformly discretized mesh. dc3dm implements an approximate form of IGA.

Importantly, IGA’s OOA on a nonuniform mesh is the same as DDMu’s on a uniform one (property 3).
dc3dm and hmmvp are available at pangea.stanford.edu/research/CDFM/software.

1

2 Technical Report

2.1 Objectives
(a) Original: log

10
 |v

o
| for v

o
 = ∂

y
 u

z

298.99 0.02 1.98 0.02 298.99

(a)
(b) Symmetry−Based Fix: v

f

(b)
(c) log

10
 |(v

o
 − v

f
) / v

f
|

−15

−10

−5

0

(c)

Figure 1: A demonstration of
the symmetry-based increase
in accuracy of Okada’s rou-
tine DC3D.

Quasistatic rate-state friction (QRSF) simulators are used to study the mechanics
of faults. The displacement discontinuity method (DDM) [Crouch and Starfield,
1983] meshes the fault or faults into N elements and constructs a matrix of Green’s
functions (GF) relating slip to stress. The simulator evolves strength and slip in
time. Usually, the most expensive part of a simulation time step is the matrix-vector
product (MVP) of the slip distribution with the DDM matrix; the straightforward
implementation performs O(N2) operations.

In our proposal for this work, we had two objectives. First, we wanted to
complete scalable implementations of all parts of hmmvp, a software package that
speeds ups the DDM MVP to about O(N logN) asymptotically and in practice
gives speedups on the order of tens to thousands, depending on problem size, with
the same reduction in memory use.

Second, we intended to develop algorithms and software to calculate the Green’s
function for a layered elastic half space. For now, we have postponed working on
this second problem because we became aware of an important problem that we felt
we should solve first. The standard DDM method in a 3D half space uses constant
slip elements. This method is convergent only on a subset of all fault geometries and
meshes, and has an acceptably high order of accuracy (also called convergence rate)
on only uniform meshes. However, nonuniform meshes are very important when
performing simulations with highly variable rheology, as required resolution scales
with Lb ∼ µ′dc/(bσ), where µ′ ≡ µ/(1 − ν), µ is the shear modulus, ν is Poisson’s
ratio, b is the constant multiplying the state term in rate-state friction, σ is the
effective normal stress, and dc is the characteristic slip distance for friction evolution.
Hence we developed the algorithm IGA and implemented it in and released the
software dc3dm. The method achieves the same order of accuracy as the standard
method but on a nonuniform mesh. dc3dm builds on hmmvp.

2.2 Methodology and Results

Constructing and applying a DDM has roughly three components: the Green’s
function, the representation of the linear operator, and the mesh and geometry. We
describe our contributions in each area in what follows.

2.2.1 Greater accuracy in Okada’s DC3D

The routine DC3D of [Okada, 1992], usually in the file dc3.f, is widely used to
compute the Green’s function for a rectangular dislocation in an elastic half space.
This software is efficient and generally very accurate. Okada recognized several
sources of numerical error and compensated for these. However, our high-resolution
DDM applications, especially those on a nonuniform mesh, have revealed that more
must be done.

Fig. 1 shows an example rectangular dislocation (outlined by the black square) and receivers placed (highly
nonuniformly to emphasize regions of numerical error) in the plane around it. Colors in (a) and (b) correspond to
log10 of the absolute value of the sum over displacement derivatives. (This quantity is not meant to be physical;
rather, it provides a good summary of all components.) In (a), there are four cones of numerical error in the derivative
calculation out of a possible eight. Each cone emerges from an edge of the rectangular dislocation. The cause of the
error is numerical cancellation in expressions of the form R+y for y = η < 0 or y = ξ < 0, where R = (ξ2+η2+q2)1/2

and ξ, η, q are element coordinate directions, with q normal to the element.
The solution is to use the symmetry of the problem to reflect the source-receiver geometry across the q-ξ and

q-η planes so that the transformed receiver is in the ξ, η ≥ 0 quadrant. Calculations for receiver points in this one
quadrant are not subject to cancellation error. Then reflect the transformed solution back to the original space. The
software operations are a small number of comparisons and sign changes and so are negligible relative to the other
calculations. The result is shown in (b), and the relative difference between the two images in shown in (c). In (c),
color corresponds to log10 of the absolute value of the difference between (a) and (b) divided by the maximum value
over the receivers.

2

−2

−1

0

1

2

log
10

 H−matrix size [Gb]
(a)

−10

−8

−6

−4

−2

log
10

 relative error
(b)

4 5 6
0

1

2

3

4

log
10

 compression time [s]
(c)

4 5 6

−2

−1

0

1

2 log
10

 MVP time [s]
(d)

Figure 2: Results for hmmvp numerical experiment. On x axis is
log10N , where N is number of elements in fault mesh. y axis is in-
dicated by plot titles. Blue solid curves are for (M); red dashed, (B);
green dash-dotted, reference slopes for linear and quadratic scaling.

The modified version of Okada’s soft-
ware is distributed in the file dc3omp.f on
our website’s Software page in the packages
disloc3d and dc3dm. dc3omp.f also in-
cludes OpenMP pragmas to make the code
threadsafe (not parallel: it remains a serial
code, as is probably best; rather, multiple
threads can call DC3D safely without over-
writing each other’s COMMON data).

2.2.2 H-matrices and hmmvp

A variety of methods can speed up the
MVP. The FFT is the fastest when it is
applicable. H-matrix approximation gen-
erally achieves the fastest MVP but slowest
construction time among alternatives and
so is best for problems in which the opera-
tor is formed very infrequently relative to
its application; they are also useful when
the GF is very complicated. H-matrices
are well suited to QRSF simulators.

Let B be the M × N matrix that im-
plements the DDM operator and B̄ be the
approximation to it, and similarly with all
approximations. The procedure to con-
struct an H-matrix has four parts. First, a cluster tree over the elements is formed. The cluster tree induces a
permutation of B. For notational brevity, hereafter we assume B is already permuted. Second, pairs of clusters are
found that satisfy a criterion involving distance between the two clusters and their diameters; associated with pair i
is a block of B, Bi. Third, the requested error tolerance ε is mapped to tolerances on each block Bi. The tolerance
specifies the maximum error allowed. Fourth, each block is approximated by a low-rank approximation (LRA) that
satisfies the block’s tolerance.

An LRA to an m × n block Bi can be efficiently expressed as an outer product of two matrices U and V :
Bi ≈ B̄i = UV T . Let r be the number of columns in U ; then r is the maximum rank of B̄i and the rank if U and V
have independent columns, as is always the case in this work. Bi requires O(mn) storage; B̄i, O(r(m+ n)).

Let δB ≡ B − B̄. In hmmvp, the tolerance ε bounds the matrix error as ‖δB‖2 ≤ ε‖B‖2. This specification of
the error bound must be mapped to one for each block. There are at least two methods. The most common is what
we call method (B) for block -level relative error control (REC): ‖δBi‖F ≤ ε‖Bi‖F. Proof: ‖δB‖2F =

∑
i ‖δBi‖2F ≤

ε2
∑

i ‖Bi‖2F = ε2‖B‖2F, where
∑

i sums over the blocks Bi of B. We have found that a second method yields

greater compression, method (M) for matrix -level REC: ‖δBi‖F ≤ ε
√
mini√
MN
‖B‖F. Proof: As MN =

∑
imini,

‖δB‖2F =
∑

i ‖δBi‖2F ≤ ε2(MN)−1‖B‖2F
∑

imini = ε2‖B‖2F.
Numerical test. A square planar fault (but hmmvp can handle arbitrary 3D distributions of elements) dips at 12

degrees in an HE half space; the top of the fault is at the surface. The fault is uniformly discretized into N squares.
Refinement divides each square into four. The Okada Green’s function for constant-dislocation rectangular sources
determines the values in the N ×N matrix BN . Column i of BN relates slip in a shear component of element i to
traction on that same component in all elements. H-matrices are formed for N = 2k for k = 6 to 10; with methods
(M) and (B); and at different values of ε: 10−k for k = −8,−6,−4,−2 for (M) and k = −6,−4 for (B). Compression
and MVP were tested on a computer having these specifications: 16 cores, 2.6 GHz AMD Opteron 6212, 32 GB
memory. Compression uses 16 cores with OpenMP; the MVP, 8.

Figure 2 shows results. In all four plots, the x axis is log10N and the y axis is indicated by the text title. Solid
blue lines are for (M) and red dashed for (B); green dash-dotted are reference lines.

In (a), H-matrix sizes, including metadata, are plotted. The top reference line is for single-precision storage of a
full matrix. The bottom reference shows the slope for O(N) scaling. The jump in compression for (M) between the
first two and second two sets of measurements results from an automatic switch from single to double precision. As
a specific example, for N = 10242 and with ε = 10−6, (M) produces a 12.4 GB matrix, which is 330 times smaller
than the 4 TB required for a single-precision full matrix of that size. The size of the files for (B) on the largest mesh

3

were not recorded. For N = 5122 and with ε = 10−6, (M) yields a 2.7 GB matrix and (B) a 6.9 GB matrix, which
is 2.6 times larger.

Figure 3: An IGA mesh.

In (b), measured relative errors ‖δBN‖F/‖BN‖F are plotted. Every matrix
has less error than requested. Any accuracy greater than that requested means
work and storage are wasted. Every (M) H-matrix is within a factor of 10 of the
requested tolerance except those for ε = 10−2, which are within a factor of 100.
In contrast, the (B) H-matrices a little less than 103 (for ε = 10−4) and almost
104 (for ε = 10−6) times more accurate than requested. In general, we have found
that for DDM matrices, (M) produces a more efficient approximation than (B) for
a requested error tolerance by producing an approximation B̄ that is little more
accurate than is requested; for identical achieved tolerances, (M) and (B) are about
equally efficient.

Because the compression procedure accesses a subset of elements, H-matrices
can be formed in a time that scales better than O(N2). In (c), compression time in wall-clock seconds is shown
for (M) with ε = 10−8 and (B) with ε = 10−6. Times are not shown for other values because the matrices were
derived from the most accurate using SVD recompression, which is fast enough that reading and writing the files is
the bottleneck. Reference lines are shown for O(N) and O(N2) scaling. For N = 10242, (M) took 34 minutes.

In (d), the time to compute a matrix-vector product using 8 cores is plotted, along with O(N) and O(N2)
references. For N = 10242, ε = 10−8, and method (M), an MVP takes 1.9 seconds.

Traction (naive) log
10

 Error, −5 to −1 Traction (AIGA) log
10

 Error

Figure 4: Tractions and pointwise absolute errors (rela-
tive to maximum traction magnitude) for DDMu(n) (left
two columns) and AIGA methods (right) applied to the
strike-strike GF for an example problem. From top to
bottom, the level of refinement increases successively by
2 in each dimension. DDMu(n) causes errors where adja-
cent elements differ in size (outlined by black lines in the
top-left image). Peak magnitude of the error stays approx-
imately constant with refinement, causing a drop in order
of accuracy from 2 to 1/2. Color scales are the same in
respectively columns 1 and 3, and 2 and 4.

This year, hmmvp version 1 was completed and re-
leased. All parts are implemented in C++ and par-
allelized by (according to build options) MPI and
OpenMP. Compression is now approximately 20 times
faster than in version 0 on a 16-core machine. The
MVP was also improved in parts, though speedup over
the version 0 release is probably < 2×.

2.2.3 IGA and dc3dm

Exact IGA. Let M be a mesh. A DDM constructs a
matrix G to relate traction and slip by τ = Gs. There
is one such equation for each pair of slip and traction
components.

The order of accuracy of a discretization of a PDE
is the negative of the slope of log relative error as a
function of log number of elements. This number is by
convention multiplied by the dimension of the mani-
fold that is discretized, which in this case is 2. (Oth-
erwise, the OOA for a method would differ with the
dimensionality of the problem.) If the OOA is > 0, the
method is convergent: as the mesh is refined, accuracy
of the solution increases without bound. If the OOA
is ≤ 0, the method is nonconvergent. If it is < 0, then
it is divergent, which means that accuracy drops with
increasing refinement. If it is exactly 0, accuracy can
increase with refinement until some refinement level, at
which point no further gain in accuracy is possible. As
a rule, we must always use convergent methods. One
practical reason is that a basic and important test of
the validity of a solution is to refine the mesh and check whether the solution changes. If it does not and the method
is convergent, then the solution is likely valid. But if the method is nonconvergent, then getting the same solution
may only mean that the maximum possible accuracy has been attained; that accuracy may not be sufficient, and
one cannot know. We also prefer high-order methods if they are available, as a higher-order method does less work
during the simulation for a requested accuracy.

Let Mu be a uniform mesh. Each entry of DDMu’s operator Gu corresponds to the output of one call of Okada’s
DC3D. Such an entry we call a simple GF.

4

Test slip function Traction

2.5 3 3.5 4 4.5
−4

−3.5

−3

−2.5

−2

−1.5

−1

−0.5

0

log
10

 Number of elements

log
10

 Relative error

2.5 3 3.5 4
0

0.5

1

1.5

2

2.5

log
10

 Number of elements

Empirical order of accuracy

uniform

AIGA

naive

W−E periodic; S velocity BC; N free surface; halfspace; src: strike; rcv: strike

Test slip function Traction

2.5 3 3.5 4 4.5
−4

−3.5

−3

−2.5

−2

−1.5

−1

log
10

 Number of elements

log
10

 Relative error

2.5 3 3.5 4
1.8

1.9

2

2.1

2.2

2.3

2.4

2.5

2.6

log
10

 Number of elements

Empirical order of accuracy

uniform

AIGA

naive

W−E periodic; S velocity BC; N free surface; halfspace; src: strike; rcv: normal

Test slip function Traction

2.5 3 3.5 4 4.5
−2.5

−2

−1.5

−1

−0.5

log
10

 Number of elements

log
10

 Relative error

2.5 3 3.5 4
0.8

0.9

1

1.1

1.2

1.3

1.4

1.5

1.6

log
10

 Number of elements

Empirical order of accuracy

uniform

AIGA

naive

W−E periodic; S velocity BC; N free surface; halfspace; src: strike; rcv: dip

Figure 5: Convergence plots.

Let Mn be a nonuniform mesh having the following
property: Each element must tile each element larger
than itself. If DDMu is applied to this mesh, we call
the method DDMu(n). Let the smallest element in
Mn have the same size as an element in Mu. By these
two properties, every element e ∈ Mn has associated
subelements in Mu that tile e. In practice, we also
choose Mn so that each element e’s neighbors are no
smaller than half or larger than twice e’s length. Mn

is constructed according to the resolution function fr,
which maps fault coordinate to maximum permissible
element size.

Let Tn be a triangulation induced by Mn. Let In→u

(sometimes written just I) be a linear operator map-
ping data on Mn to Mu. It implements smooth (C1)
interpolation; we use cubic Clough-Tocher interpola-
tion over Tn (with certain choices made for the gra-
dient estimates). This method has order of accuracy
greater than 2.

Let Au→n (or just A) be a linear operator mapping
data on Mu to Mn. Let e ∈ Mn be tiled by E ⊂
Mu. A averages values at the centers of f ∈ E to the
center of e. Because the center of e is also the center
of E, averaging is equivalent to a linear fit followed by
interpolation. Hence A has OOA 2.

These three linear operators together implement
exact IGA (EIGA): Gn ≡ Au→nGuIn→u. To be clear,
Gn is the output of the IGA method; A, Gu, and I are
intermediate quantities.

Approximate IGA. EIGA has the undesirable
property that its computational complexity is deter-
mined by the smallest element in Mn; this element in-
duces the mesh Mu for which the three matrices A, Gu,
and I must be computed. Approximate IGA (AIGA)
uses an additional idea to solve this problem. Define a
parameter δr that sets receiver neighborhood size. It is
a number between 0 (no neighborhood; in fact, iden-
tical to DDMu(n)) and a problem-dependent value at
which EIGA is reached.

Let nj ≡ rbox(ej , δ) be the set of elements such
that each element e ∈ nj has distance from ej no
greater than δ length(ej). Let ej be a receiver el-
ement. The initial neighborhood for ej is nij ≡
rbox(ej , δr). The final neighborhood for element ej is

nfj ≡ rbox(ej , δ
f
r) for δfr ≥ δr. δfr is the minimum value

such that for any two elements ej and ek, if ej ∈ nik,

then ek ∈ nfj . Let eSj be the smallest element in nfj ;

s = length(eSj) sets the subelement size that tiles every

element in nfj and indexes the operators As, Gs
u, Is.

In the following, colors refer to Fig. 3. Full IGA
source-receiver calculations are carried out for sources e ∈ nfj (white inside of the red layer); these are type-1 source

elements (w.r.t. receiver ej (black)). A source e in a layer (red) around nfj contributes to IGA calculations for sources

inside nfj (through interpolation), but e itself is not broken into subelements; these are type-2 source elements. All
other source elements are type-3 (white outside of the red layer); associated with these are simple GFs.

dc3dm implements AIGA; DDMu is recovered with certain choices, so dc3dm can also be used simply as a con-
venient layer on top of hmmvp for problems involving planar rectangular faults. Matrices for all nine source-receiver

5

dislocation-traction pairs and linear combinations of dislocations and tractions, respectively, can be calculated.
Boundary conditions (BC) can be periodic in the surface-parallel direction (in both directions if the GF is for a
whole space), velocity, and free surface. Periodicity is approximate: the domain is repeated periodically a finite
number of times. For a given source-receiver pair, the periodically repeated source nearest the receiver is used as the
primary source, and then a specified number of layers are constructed.

Convergence Analysis. Fig. 4 illustrates the application of DDMu(n) and AIGA to a sequence of increasingly
refined nonuniform meshes. DDMu(n) produces quite visible artifacts where elements differ in size; AIGA does not.
In this section we formalize this result.

Analysis of the DDMu shows that its OOA is 2 for the strike-strike, dip-dip, tensile-normal, strike-normal, dip-
normal, tensile-strike, and tensile-dip source-receiver GFs and 1 for strike-dip and dip-strike. The lower OOA in the
final two cases results from the self-interaction calculation for a term of the form 1/R. Because the operators In→u

and Au→n have OOA at least 2 and the range of In→u is C1, EIGA inherits the OOA of DDMu. If δr is chosen
correctly, AIGA also does.

A suite of empirical convergence tests (ECT) is used as one test of dc3dm. The suite includes every corner
combination of BCs and every source-receiver component. Fig. 5 shows results for a subset of the ECT for the most
interesting combination of BCs and strike-(strike, normal, dip) source-receiver GFs. Relative error is with respect to
the solution of DDMu on a very fine mesh.

A base mesh is created for DDMu and AIGA at refinement level 0. At level i, each base element is divided
into 4i elements. (In practice, an IGA mesh is not uniformly refined as in this test; rather, it is always made from
scratch according to the resolution function. However, this practical method introduces additional and unnecessary
complexity into the convergence analysis.)

Coarse solutions are mapped to the fine mesh using IGA’s interpolant. Whether AIGA is more accurate than
DDMu or the opposite is arbitrary, as the mesh and test slip function are chosen independently; only the order of
accuracy matters. The mesh is chosen to be interesting, and the test slip function is chosen to permit converged
results without refining the mesh too many levels and to respect the BCs.

δir, δr at level i, is chosen as δir = (2i(2δ0r + 1)− 1)/2. This choice implements the following rule. If e ∈ E, where
E at level j is the set of elements that tile e at level i < j, then the area of the neighborhoods around e and f ∈ E
must be the same (in the limit of refinement; at finite refinement, areas are almost certainly slightly different).

−0.005 0 0.005 0.01 0.015 0.02 0.025 0.03 0.035 0.04 0.045

−10

−8

−6

−4

−2

slip
i
 [m]

lo
g

1
0
 v

i [
m

/s
]

Detail: 4 9

DDMu fine

DDMu coarse

naive

AIGA−4

AIGA−8

Figure 6: Traces of log10 v vs. slip for two trace points in
the time-dependent simulation.

Time-dependent simulations. In quasistatic
(or quasidynamic) rate-state friction simulations, the
resolution function fr should be a function of fault
properties. One such function is fr ≡ αµ′dc/(bσ),
where α is a constant . 1/5. The motivation for
this particular fr is that rupture tip length scales as
µ′dc/(bσ) for the aging evolution law and that quantity
times one that depends on slip speed and background
values for the slip law. Rupture tips must be well re-
solved in simulations.

We ran two time-dependent simulations. Our AGU 2013 poster [Bradley, 2013] has comprehensive results. Here
we focus on just one plot. Three meshes are used: (i) a uniform mesh with element size es, (ii) a nonuniform mesh

with smallest element size es and N elements, and (iii) a uniform mesh with
⌈√

N
⌉2

elements. Multiple simulations

are run: DDMu on (i) (‘DDMu fine’), DDMu on (iii) (‘DDMu coarse’), DDMu on (ii) (DDMu(n), ‘naive’), and AIGA
with δr = 4, 8.

All simulations are run on a shared-memory computer having these specs: 16 cores, 2.6 GHz AMD Opteron 6212,
32 GB memory. Measurements are as follows: DDMu fine compression: 46 min, 2.8 GB (256 GB uncompressed);
AIGA-4 compression: 12 min, 169 MB; AIGA-8 compression: 46 min (by chance), 213 MB; AIGA-8 simulation: 61
min, for a simulation speedup of 14.1× over DDMu resulting from a matrix size decrease factor of 12.7, a time step
increase factor of 1.2 (when using an adaptive time step, time steps can be longer when the time-step-limiting activity
is in a large-element region), and a slight loss in FLOPS because of more logic and memory movement relative to
floating point operations. (DDMu using hmmvp is already &90× faster than it would be without hmmvp, so the overall
speedup is approximately 14 · 90 = 1260.)

Fig. 6 shows log10 v vs. slip for two trace points on the fault over five cycles. The traces for DDMu on the fine
mesh (black) are considered the correct solution. DDMu on the coarse mesh produces underresolved slip speed,
resulting in a spiky trace. DDMu(n) produces smooth traces (cyan), but they are quite visibly different than the
black ones. AIGA-8 (red) produces nearly identical traces to the black ones; red overlaps black almost everywhere.
AIGA-4 has an inadequate value of δr.

6

References

A. M. Bradley. dc3dm: Software for efficient quasistatic dislocation-traction operators on nonuniformly discretized
rectangular faults. Abstract T51D-2490 presented at 2012 Fall Meeting, AGU, San Francisco, Calif., 3-7 Dec.,
2013.

S. L. Crouch and A. M. Starfield. Boundary Element Methods in Solid Mechanics. George Allen and Unwin, London,
1983.

K. M. Johnson, D. Shelly, and A. M. Bradley. Numerical simulations of tremor-related creep reveal weak lower-crustal
root of the San Andreas fault. Geophys. Res. Lett., 2013.

Y. Okada. Internal deformation due to shear and tensile faults in a half-space. Bull. Seism. Soc. Am., 82, 1992.

7

3 Exemplary Figure

Traction (naive) log
10

 Error, −5 to −1 Traction (AIGA) log
10

 Error

Tractions and pointwise absolute errors (relative to maximum traction magnitude) for the naive (DDMu(n), left two
columns) and AIGA (right) DDM methods applied to the strike-on-strike Green’s function for an example problem.
From top to bottom, the level of refinement increases successively by 2 in each dimension. DDMu(n) causes errors
where adjacent elements differ in size (outlined by black lines in the top-left image). Peak magnitude of the error
stays approximately constant with refinement, causing a drop in order of accuracy from 2 to 1/2. Color scales are
the same in respectively columns 1 and 3, and 2 and 4. Images are zoomed to a region of interest.

8

4 Intellectual Merit and Broader Impacts

Merit. hmmvp has a rigorous and demonstratively effective error control framework with a clear interpretation of
error, thus allowing for approximations built using hmmvp also to have rigorous error control. IGA is a DDM that, for
one useful class of nonuniform discretizations, has the same order of accuracy as the standard method on a uniform
mesh. IGA and its implementation in dc3dm are supported by extensive order of accuracy analysis. The assessment
methodology reveals potential errors researchers may make when using nonuniform constant-slip elements. It also
provides a framework for our future work in developing DDMs for more complicated geometries.

Impacts. hmmvp enables researchers to run rate-state friction simulations on faults requiring about 100× more
elements than the straightforward method permits, allowing more realistic rheology. It permits arbitrary geometry
and (nonoscillatory) Green’s function. hmmvp has been fully integrated into the simulators CFRAC (Mark Mclure,
U. of Texas, Austin) and Unicycle (Sylvain Barbot, Nanyang Technological U.) and is being evaluated for use in
another. It was used in Johnson et al. [2013]. dc3dm increases efficiency above that provided by hmmvp for a limited
geometry, permitting even more efficient theoretical studies to be done. It also demonstrates that analyzing the
convergence behavior of a DDM can lead to a more efficient method. Both hmmvp and dc3dm are free and open source
software available at pangea.stanford.edu/research/CDFM/software.

9

