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1 Summary

We worked on two inter-related approaches for detection of transient deformation. The funda-
mental assumption in both is that transient tectonic deformations are spatially coherent and
can thus be separated from localized errors. If not required by the data, fault slip-rate or
strain-rate is assumed to be steady in time.

The first approach is an extension of the Network Inversion Filter (NIF) known as a Monte
Carlo mixture Kalman Filter (MCMKF). The NIF estimates spatially and temporally variable
fault slip-rates in the presence of various noise sources. Elastic Green’s functions impose spatial
coherence on the deformation. The NIF included a constant temporal smoothing parameter
(a?). The MCMKF, however, propagates a discrete probability density of o that changes with
time. When the data reflect steady-state deformation a? is small (strong smoothing); however
during transient slip larger values of a? are favored. The integrated probability of a? over a
specified threshold is thus a measure of the probability that a transient has occurred.

We also developed a Network Strain Filter (NSF) that seeks coherent transients in the
surface strain-rate field. This approach is not dependent on a particular fault model. The two
approaches, NIF and NSF, are complementary, in that the NSF may first detect transients,
which could be further analyzed with a NIF. In both cases spatial coherence is enforced on the
transient signal at the outset. This contrasts with other approaches that analyze station time
individually, and then look to see if the deviations from steady-state are spatially coherent.



2 Technical Report

We now have deformation measurements that are sufficiently dense in space and time to mo-
tivate the development of methods for online detection of deformation transients. To date,
several algorithms have been utilized to detect and analyze transient deformation. The Net-
work Inversion Filter (NIF) [Segall and Matthews, 1997; McGuire and Segall, 2003] and Network
Strain Filter (NSF) [Ohtani et al., 2010] can be used to estimate spatio-temporal variations in
fault slip rate (NIF), or strain-rate (NSF), from geodetic data. The fundamental assumption
in both algorithms is that transient tectonic displacements are spatially coherent and can thus
be separated from localized error sources. If not required by the data, fault slip rate or strain
rate is steady in time.

A challenge for all transient detection methods is assigning a significance level to potential
anomalies. Finding possible transients is not difficult — determining whether they are statisti-
cally significant is more difficult. A particular limitation of the NIF and NSF is that a smoothing
parameter that governs temporal variations in slip or strain is assumed to be constant in time.
This can lead to under or oversmoothed temporal variations. An oversmoothed estimate could
lead to a delayed real-time detection or possibly a failure to detect, because the modeled tran-
sient will evolve more slowly than the actual transient. On the other hand, an under smoothed
estimate could lead to time-series noise being mapped into signal.

Fukuda et al. [2004; 2008] overcome this with the implementation of a particle filter, referred
to as a Monte Carlo mixture Kalman Filter (MCMKF), that allows for rapid changes in tem-
poral smoothing. The MCMKF propagates a discrete probability distribution of the temporal
smoothing parameter sequentially in time. When the data reflect steady-state deformation,
the smoothing parameter tends toward a low value (strong smoothing). However, if the data
reflect transient fault slip or strain, larger values of smoothing parameter (weak smoothing) are
favored. Although this method was designed for retrospective detection and imaging of past
transients, the approach lends itself directly to a true on-line, real-time transient detector.

2.1 Fault Slip Transient Detection

The MCMKF employs the forward model used in the NIF [Segall and Matthews, 1997]. Dis-
placement as a function of position x and time ¢, u(x,t), is modeled as the sum of contributions
from fault slip, local benchmark motion, reference frame, and measurement errors,

u(x,t) = /AG(X,ﬁ)s(g,t)dﬁ + L(x,t) + Ff(t) +e. (1)

The first term on the rhs of (1) represents the displacement due to slip s(&,¢) on fault in an
elastic half space, where G(x, &) is the elastostatic Green’s function. The second term L£(x,t)
represents colored noise due to random benchmark motions. The third term Ff(¢) represents
reference frame errors, where F is a Helmert transformation matrix and f(¢) is a vector of rigid

body translation, rotation, and scale factor. Fault slip s,(§,t), is expanded in M spatial basis

functions B,ip) (&) assp(€,t) = 224:1 ck(t)Blgp) (&) where ¢k (t) are temporally varying coefficients.

[Segall et al., 2000; Fukuda et al., 2008]. Differentiating with respect to time, yields slip rate
5p(&,t) in terms of the coefficients, ¢ (t). The slip-rate coefficients, ¢;(t), are modeled as random
walk processes with scale parameter «

ék(tn> = ék(tn_l) + Uﬁlk), ’U(k) ~ N (0, OéQAtn) (2)
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where vy, is the process noise and At,, is the time interval. From (2) a low value of o2 yields
strong temporal smoothing, whereas larger values of o are required to capture rapid changes
in slip-rate. Therefore, a? can be regarded as a temporal smoothing parameter.

Fukuda et al. [2004, 2008] introduced a time-varying smoothing parameter, ?(t). They
implemented a Bayesian sequential filtering algorithm referred to as a Monte Carlo mixture
Kalman filter (MCMKF') that combines a particle filter and the Kalman filter to estimate joint
posterior pdf of a?(t) and the state vector. The MCMKF consists of two steps. First, the
temporal evolution of the posterior pdf of a?(t) is obtained using a particle filter [Kitagawa,
1996; Fukuda et al., 2004]. Second, the temporal evolution of the state vector (including the
slip distribution) is estimated using a?(t) obtained in the first step. Let a? denote o?(ty)
and let dj, be data observed at time ;. The posterior probability distribution of a?,a3, ..., a2
conditioned on data dy,ds, ..., dy,, p(a?,...,a2|dy,...,d,), can be obtained through prediction
and filtering steps, as in a standard Kalman Filter.
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Figure 1: (a) Estimated temporal variation of posterior
For 2 (t) below some threshold value, pd% of a2(§) ,) in a simulation. Dashed line shows the

the system is effectively at steady-state. ;. irum Tikelihood estimate for constant a?, as in the

We thus define a threshold value, a?nin’ original NIF. (b) Time dependence of true slip velocity

such that if a?(t) < a2, slip rate is on the transient slip patch. Fukuda et al. [2008].

regarded as in a steady-state whereas if

a?(t) > o2, a transient is in progress. Using the threshold value o2
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for k =1,2,...,n. This provides a measure of the probability that a transient slip-rate change
has been detected at the specified level.

The transient detection algorithm proceeds as follows. We run the MCMKF algorithm
to estimate the posterior probability distribution of a?(t). At each epoch, we calculate the
probability using the posterior distribution obtained by the filtering algorithm. If the probability
given by equation (3) exceeds some threshold, we consider a transient to be detected.



We illustrate the MCMKEF on
a slow slip event in the Boso
Peninsula region of Japan in
2002. Figure 2 shows daily GPS
time series at three selected sta-
tions. Rapid transient displace-
ments were observed between day
of year (DOY) 276-285, and the
transient continued after DOY
285 with smaller displacement
rates. Figure 3 shows evolu-
tion of ptransient(tk) = p(a% >
a2 |di,dg,...,d,) with time.

The filter starts at day 240
and it appears initially that there
is a possibility of a transient
(with data only up to the present
it is difficult to know if today is
the start of a transient), however
as more data are collected it be-
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Figure 2: 2002 Boso Japan slow slip event. Observed and com-
puted displacements at 3 stations. Solid lines show predicted dis-
placements. (d) Locations of the selected stations.

comes clear there is no transient there. The actual transient that starts near day 276 shows up
very clearly and becomes pronounced as more data are collected. In this case the occurrence of
a transient is detected with high confidence. Other synthetic tests show that subtle transients
require more data and are detected at a lower confidence level.

2 -
log10( o =1

i

h"‘h{“
\ |

280

Time (day)

Figure 3: Mesh plot showing the probability piransient (tx) the
probability that the acceleration parameter a?(t) exceeds the
= 1, given data up to epoch n. Time t;
is shown on the right axis, and the current time ¢,, is shown on
the left axis. Note that at the current day t,, a®(t) can only be
conditional on data up to that day, so that k& < n, hence there is
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mesh only for the “back triangle”.

The detection algorithm in-
volves internal parameters that in-
fluence piransient(t), These include
parameters that control spatial
smoothing, the transition prob-
ability in the particle prediction
step (as discussed in Fukuda et
al.  [2004, 2008]), as well as
the filter “lag”, defined as fol-
lows. In principal, the estimate
of o at all past epochs is up-
dated with every new observation.
However, Kitagawa [1996] showed
that posterior distributions repre-
sented by finite numbers of par-
ticles become narrower than the
true distributions. Introducing a
lag L, such that a? at epoch n
is updated every epoch until n +
L, yields better estimates of the
posterior distribution. In other
words, p(a2|dy,...,dnir,...ds),
where £ > n + L, is replaced by
p(a|dy, ..., dpir).



We have found that choosing L too small can fail to detect simulated transients. Spatial
under-smoothing has the same result. In contrast, spatial over-smoothing can cause o to be
over estimated. To reduce computational complexity one can expand the slip in an orthornomal
basis based. One then employs a depleted basis, keeping only the most significant terms in the
expansion. This was the approach of Fukuda et al. [2008]. The Kalman filter estimates the
time-varying coeflicients of the basis functions. We find that it is, however, important to include
an appropriate number of basis functions, as illustrated in Figure 4. We address these issues
by tracking the normalized data misfit, the norm of the random walk components, and a norm
of the estimated slip-rate. The first two measures allow us to protect against over- smoothing
which will either misfit the data, or map the misfits into the random walk terms. The latter
protects against mapping temporal variations into extreme spatial roughness.

We concluded that for proper
imaging and detection of transients [RR—
it is necessary to account for tem- ‘ ‘ | ‘
porally varying spatial smoothing
(regularization of the inverse prob-
lem). Specifically, we expect the
background slip-rate distribution to
be smoother than that during the
transient.  This necessitates two
changes to the algorithm. First, we I WA LV T |
need to implement spatial smooth- P S
ing via pseudo-observations rather Time (day)
than through the prior covariance
matrix. Secondly, each particle in
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Figure 4: Probability of detecting a transient as a function of
the particle flter must now repro- time for different numbers of basis functions M. Note that if M
P P is too large the transient probability is diminished, whereas if

sent a two-vector (a, 7)" Where. @ T M is too small, the probability remains high after the transient
flects temporal smoothing (as in the 5 actually ceased.

current implementation), and vy re-
flects spatial smoothing. Work on this was interrupted by the Tohoku earthquake.

2.2 Network Strain Filter

We (with Jeff McGuire WHOI, and Ryu Ohtani, GSJ, Japan) also developed an alternate set
of algorithms referred to as Network Strain Filters [Ohtani et al., 2010]. The approach is to
search for spatially coherent transients in the surface strain-rate field. The advantage of this
approach is that it is not dependent on a particular fault model. The disadvantage is that,
because it is not tied to a physical model, there is no obvious way to separate tectonic from
non-tectonic motions. The two approaches, NIF and NSF, are complementary, in that the
strain filter may first detect transients, which could be further analyzed with a NIF. In both
cases spatial coherence is enforced on the transient signal at the outset. This contrasts with a
number of other approaches that analyze the time series at individual stations separately, and
then later look to see if the deviations from steady-state are spatially coherent.

As with the NIF and MCMKF we model the data as the sum of steady-state and tran-
sient deformations, reference frame and seasonal errors, and local benchmark motions. With
the Network Strain Filter, however, we forgo associating transient deformation with specific
sources and simply seek a spatially coherent strain-rate field consistent with the GPS data.
Expanding uf®**(x,t) in spatial wavelet basis functions By, (x) ul°t(x,t) = S5 B,(;) (x)c,(;) (t)

r



where the index () refers to the component of displacement.Assuming a differentiable basis one
can compute the strain and rotation from the gradient of the displacement,

Outect(x, 1) i 0B, (x) (1) @ n
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We assume a separable basis, B(z,y) = {¥(z) ® ¥(y)} where z and y are latitude and longitude

and U(z) represents a one-dimensional wavelet. The Strain Filter estimates the coefficients c,(;) (t)
using a Kalman filter, including random walk, reference frame corrections. We have conducted
a number of blind tests comparing results using different wavelet bases. In addition to the
transient signal component, the synthetic data included secular motion, as well as colored and
white noise (Figure 5). Results are generally positive, although the recovered transient tends
to be smeared out in time, a feature of both the NIF and NSF with constant «?. Including a
particle filter as in the MCMKF would alleviate this problem. We developed an appropriate
spatial regularization that specifies how the different wavelet scales are weighted. We seek
strain-rate distributions that are to some degree spatially smooth. This leads to a Gram matrix
(inner product of the basis functions) with entries that scale with the spatial order of the
wavelet. In the Kalman filter this scaling is used to weight the a priori covariance matrix as
in Segall and Matthews [1997]. The transient terms at all spatial scales are set a priori to
zero, however the uncertainty in the prior is much less for the smaller spatial scales. Secondly,
by estimating the secular deformation with station velocities rather than expanded in basis
functions, we minimize the leakage of secular deformation into the inferred transients. The
simulation in Figure 5 shows that weak transients can be detected in the presence of colored
noise.
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Figure 5: Results of strain filter test (internal blind test prior to SCEC exercise). top left) true transient
displacement at final epoch; top right) estimated transient displacement at final epoch; bottom left) True
secular velocity field; bottom right) estimated secular velocity field.
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