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SUMMARY

Since 1977 we have developed statistical short- and long-term earthquake forecasts to predict earth-

quake rate per unit area, time, and magnitude. The forecasts are based on smoothed maps of past

seismicity and assume spatial and temporal clustering. Our new program forecasts earthquakes

on a 0.1◦ grid for a global region 90N–90S latitude. We use the PDE catalog that reports many

smaller quakes (M ≥ 5.0). For the long-term forecast we test two types of smoothing kernels based

on the power-law and on the spherical Fisher distribution. We employ adaptive kernel smoothing

which improves our forecast both in seismically quiet and active areas. Our forecasts can be tested

within a relatively short time period since smaller events occur with greater frequency. The forecast

efficiency can be measured by likelihood scores expressed as the average probability gains per earth-

quake compared to spatially or temporally uniform Poisson distribution. Another method uses the

error diagram to display the forecasted point density and the point events. Our short-term forecasts

also assume temporal clustering described by a variant of Omori’s law. Like the long-term forecast,

the short-term version is expressed as a rate density in location, magnitude, and time. Any forecast

with a given lower magnitude threshold can be recalculated, using the tapered Gutenberg-Richter

relation, to larger earthquakes with the maximum (corner) magnitude determined for appropriate

tectonic zones.
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TECHNICAL REPORT

1 Introduction

We have developed a time-independent (long-term) and time-dependent (short-term) earthquake

forecast by using several earthquake catalogs (Kagan & Knopoff, 1977; 1987; Kagan & Jackson,

1994; Jackson & Kagan, 1999). The importance of earthquake forecasting for seismic hazard and

risk estimation and the difficulty of resolving basic differences in forecast models have motivated

an international effort to report and test earthquake forecasts. That effort is organized by the

Collaboratory for Study of Earthquake Predictability (CSEP) (Schorlemmer & Gerstenberger, 2007;

Schorlemmer et al., 2010; Marzocchi & Zechar, 2011).

Our purpose is to adapt a clustering model that we used to make testable forecasts over large

regions of the western Pacific (Kagan & Jackson, 1994; Jackson & Kagan, 1999; Kagan & Jackson,

2000) to include long- and short-term regional and worldwide forecasts in areas designated as

natural laboratories by CSEP. Our earlier effort (Kagan & Jackson, 2011) forecasts seismicity

quasi-globally from 75N to 75S latitude with low-resolution 0.5◦ cells. To get the test running as

quickly as possible, we adopted arbitrary parameter values, similar to those that Kagan & Jackson

(2000) used. Later we calculated optimized forecast parameters (Kagan & Jackson, 2011, Fig. 11)

which were implemented in our new high-resolution forecast described here.

2 Smoothing Kernel Selection

Our previous regional and global forecasts (Kagan & Jackson, 1994; Jackson & Kagan, 1999; Kagan

& Jackson, 2000; 2011) have been based on fixed kernel smoothing. We selected a fixed kernel with

the degree of spatial smoothing controlled by the function which is asymptotic to a power-law at

distances much larger than rs

f(r) =
1
π
× 1

r2 + r2
s

, (1)

where r is epicenter distance, rs is the scale parameter of about 7.5 km and r ≤ 1000 km (Kagan

& Jackson, 2011).

Unfortunately, the 1000 km distance limit causes sharp discontinuities in the smoothed maps

as can be seen in Figs. 1, 2 by Kagan & Jackson (2011) around the Hawaii islands. These discon-
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tinuities can be avoided if we use a kernel with the whole Earth support. However, in this case the

choice of available kernels is significantly restricted. If we employ a power-law kernel like (1), its

normalization on a sphere involves the application of cumbersome hyper-geometric functions. Prac-

tically, the best simple expression for a spherical surface kernel is the Fisher distribution (Fisher,

1953, p. 296; Fisher et al., 1987, Eqs. 4.19–4.23; Mardia & Jupp, 2000, Eq. 9.3.4).

These authors propose expressions for the spherical Fisher distribution in a general, compli-

cated form. For our purpose we assume that the distribution center is at a pole of a sphere and

the distribution has a rotational symmetry. Then the probability density function (PDF) of the

spherical Fisher distribution is

f(ρ, η) = κ
4π sinh κ exp (κ cos ρ)× sin(ρ)× φ (η)

= κ
2π(eκ−e−κ) exp (κ cos ρ)× sin(ρ)× φ (η) , (2)

where η is an azimuthal angle, φ (η) is angular azimuthal distribution density, ρ = r/R is the

epicenter distance in radians, R is the Earth radius, and κ is a scale parameter.

It is more convenient to consider the Fisher distribution as depending only on distance, i.e., we

take φ (η) = 1/(2π). For the distance distribution only, since sin (ρ) δ ρ is the differential distance

element on a sphere, sin (ρ) term in (2) can be omitted as well as 1/(2π) term. Then, the cumulative

spherical Fisher distribution function is

F (ρ) =
exp [ (κ (cos ρ)− 1 ]− 1

e−2κ − 1
. (3)

For κ > 100, these equations can be simplified

f(ρ) ≈ κ exp [κ (cos ρ− 1)] = κ exp [−κ (sin2(ρ/2))] . (4)

Since for small distance values (sin ρ) ≈ ρ, the above equation suggests that the probability density

decays like a Gaussian function. In our California forecasts we applied the Gaussian as well as the

power-law kernel smoothing distributions (Werner et al., 2011) and found that they are similar in

their results.

To carry out the adaptive smoothing based on the Fisher distribution, we follow the advice of

Silverman (1986, Ch. 5.3): we first create an initial weight value estimate for earthquake epicenters

location (χi) by using Eq. 4

χi =
N∑

j=1

f(ρij) , (5)
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where N is the number of earthquakes and ρij is the distance between two epicenters.

Then local bandwidth factors (Λi) are defined

Λi(ρ) = κ (χi/χg)α , (6)

where χg is the geometric mean of χi

log χg =
1
N

N∑

i=1

log(χi) . (7)

The κ-values in Eqs. 5 and 6 could be different, but as Silverman (1986, Ch. 5.3) suggests and we

tested (see below), the parameter value in the initial estimate does not significantly influence the

final result. The forecast density at any point ~r is then estimated by

µ(~r ) =
N∑

i=1

Λi(~r − ~ri) , (8)

In Fig. 1 we display two kernel examples: the densities for the power-law and for the spheri-

cal Fisher distribution. The density maximum for the Fisher law can be calculated by equating

derivative of its PDF (2) to zero. For large κ we obtain

cos ρ− κ sin2 ρ ≈ 0 . (9)

Since for large κ (cos ρ) ↑ 1, the distance for the maximum is

ρm ≈ arcsin
√

1/κ , (10)

3 Optimizing and Testing Forecasts

Using the forecasted rate values (λi for cell centers in which earthquakes occurred) we compute

I1 =
1
n

n∑

i=1

log2

λi

ξ
, (11)

where n is the earthquake number during a forecast period and ξ is a similar rate for the event

occurrence according to the Poisson process with a uniform rate over a region (Kagan, 2009, Eq. 7).

I1 measures the degree to which the earthquakes in the test period are concentrated in cells where

the forecast rate is high. Fig. 2 demonstrates that the values of I0 and I1 may be significantly

different unless the cell size is much smaller than the smoothing distance ρ.
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Fig. 2 demonstrates how the fixed Fisher kernel was optimized using earthquake history for

1969-2005 to forecast earthquake occurrence in 2006-2010. The red curve displays the potential

gain of a forecast (specificity) – the scores increase for the narrower kernels.

Fig. 3 shows the worldwide long-term forecast made using an adaptive Fisher distribution

kernel. Comparing it with Figs. 1, 2 by Kagan & Jackson (2011) it is obvious that the width of

seismicity peaks at subduction zones is reduced. This is due to narrower kernels at concentrations

of earthquake epicenters. Seismicity contours for the low activity regions are smoother than in the

previous plot, because the adaptive kernels are broader in these places.

Optimizing the three parameters κ, α, and ε is computationally challenging, so we’ve taken

some shortcuts. We used a low-resolution grid (0.5 by 0.5 degrees) to estimate κ and α, and we

made only a partial search for the maximum likelihood values of all parameters. The model used

in Fig. 3 is based on that approximate optimization. We regard it as a respectable model worthy

of comparison to others, but the values could probably be improved by further optimization.

4 Outreach Activity

Our work on earthquake forecasting and its testing has been extensively reported in scientific

literature (see below the list of publications) as well as in many presentations at meetings and

workshops. The 11 March 2011 Tohoku, Japan, magnitude 9.1 earthquake and the ensuing tsunami

near the east coast of the island of Honshu caused nearly 20,000 deaths and more than 300 billion

dollars in damage, resulting in the worst natural disaster ever recorded (Geller, 2011; Stein et al.,

2011). The major issue in the enormous damage was a great difference between the expected and

the observed earthquake magnitudes. The maximum magnitude size for Tohoku area (around 7.7)

was proposed in the official hazard map (Geller, 2011; Stein et al., 2011; Simons et al., 2011). The

evaluation of maximum possible earthquake was discussed in several of our previous publications.

We prepared a few manuscripts (now in review) which update and enhance our results, we again

propose that magnitude 9.0-9.7 earthquake are to be expected in subduction zones. These new

results were reported in a several scientific meetings.
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Figure 1:

Examples of kernel graphs: Red – power-law kernel with rs = 7.5 km; Blue – corresponds to the

Fisher distribution kernels (Eq. 4) with κ = 10,000.
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Figure 2:

Dependence of information scores on the smoothing scale parameter in the Fisher distribution

rm = R×ρm (10) for the 2006-2010 forecast based on the PDE catalog for 1969-2005. The abscissa

rm values correspond to κ = 1, 000, 000; 100, 000; 10, 000×√10; 10, 000; 1, 000 in this order. Red

line is I0 score, blue – I1, green – I2, and magenta line is for I ′1.

10



Long-term Forecast, PDE 1969-2005, full sphere, 0.5 deg., Fisher_ad 10000/0.003/0.5

-7 -6 -5 -4 -3 -2
Log10 probability of earthquake occurrence, M > 5.0, eq/day*(100km)2

Figure 3:

Earthquake long-term rates based on smoothed seismicity from the PDE catalog 1969-2005. Adap-

tive smoothing kernel based on the Fisher spherical distribution (Eqs. 6–8) is used. Values of

parameters are: κ = 100, 000, α = 0.5, and ε = 0.003. Earthquake occurrence is modelled by a

time-independent Poisson process.
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