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Summary

We study continuous geodetic network data, such as those recorded by EarthScope PBO GPS
location solutions, in the context of crustal deformation and fault loading. Two different transient
detection algorithms are analyzed, in particular regarding their ability to be fully adapted to the
crustal deformation time series. In one case, the empirical mode decomposition (EMD) method is
used to separate the nonlinear and non-stationary time series into distinct oscillating modes called
the intrinsic mode functions (IMFs). Then, following the enhanced Hilbert-Huang transform
methodology, the IMFs are fitted to a time-dependent, vector autoregressive, moving-average
model (VARMA) prior to being analyzed in terms of their frequency distributions. Change occurs
when the statistical content of the VARMA coefficients changes, which allows us to segment
the time series into distinct states. In a second approach, each time series is modeled as an
autoregressive (AR) processes with time-varying order and time-varying coefficients such that our
problem is reduced to an optimal filtering exercise; i.e. the sequential estimation in time of the
unknown hidden sates, which consist of the AR order as well as the real and complex reciprocal
poles of the characteristic polynomial of the AR process. The detection of transient signals within
the data set provides some insight regarding the nature and the scale of the different dynamics
driving the system.

The grant mainly provided funding for USC engineering graduate student Maud Comboul.
Initial results were presented at the 2010 SCEC annual meeting, where we also participated in
the Transient Detection Workshop (September 2010).



Current Results

For the purposes of the analysis, we assume that the location data collected based on the GPS
devices is the only available representation of the real, dynamic system. This study then attempts
to understand and predict the underlying mechanical drivers from the GPS data, without any a
priori physical model. We must, however, carefully interpret those measurements, inasmuch as
the observed displacement fields emerge from a conjunction of processes acting at multiple scales.
This complexity characterizing the structural earth system is reflected in inherently non-stationary
and nonlinear time series. Furthermore, the network of GPS stations is rapidly increasing and the
data recorded on a daily basis is vast, therefore, it is also crucial to develop the ability to analyze
the incoming measurements efficiently and automatically. The present work explores data-adapted
algorithms, which could process and analyze an entire time series data set without supervision.
In the following sections, we briefly describe the two different approaches we have looked at so
far. Those are complementary to more established approaches used or further developed by the
SCEC community.

Empirical Mode Decomposition approach

Most data processing techniques require linearity or stationary assumptions in order to be suc-
cessful; however the real world is usually neither one. In our case, the main assumption would
be that crustal velocities are constant and location time-series linear. This tectonic background
motion is clearly interrupted by transient behavior caused by perturbations, both physical, related
to the earthquake cycle, and based on other deterministic, but less interesting (e.g. hydrologic)
sources, or noise (Figure 1). Another characteristic, as one observes several crustal deformation
records from the GPS network, is the non-uniform nature of the time scale lengths associated
with transient events. The Empirical Mode Decomposition (EMD) and the Ensemble Empirical
Mode Decomposition (EEMD) methods proposed by Huang et al. (1998) to analyze data, do not
assume any a priori representation such as basis functions for the data, they only suppose that
the data is the result of superposed oscillatory modes having various frequencies. The decompo-
sition provides an adaptive framework to study data generated from nonlinear and non-stationary
processes. Components obtained from the EMD are called intrinsic mode functions (IMF). The
procedure to decompose the signal into distinct IMFs involves an iterative algorithm called the
sifting process. We use the EEMD over the EMD to reduce mode mixing, i.e. when different
oscillating modes remain in a single IMF, which often happens with signal showing intermittent
characteristics.

Given a time series x(t), we applied the sifting algorithm on an ensemble of N time series

(yi(t) = x(t) + µi(t))i=1,...,N (1)

consisting of the original signal perturbed with normal white noise µi, and took the average of the
IMF ensemble. The EEMD generates multiple mono-component time series (IMFs) from a scalar
nonlinear and non-stationary signal. Figure 2 demonstrates the oscillating modes from fastest
to slowest. The IMFs are narrow band signals with the interesting property of having the same
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number of extrema and zero crossings. In addition, prediction of the time series forward in time
is reduced to finding the locations and the values of the next extrema.

Next, the IMFs of the crustal displacements time series are fitted with a time varying VARMA
process (Yinfeng et al., 2006). In its general form, the ARMA(p, q) is the combination of an
autoregressive process of order p with a moving average part of order q. Those models are
widely used to fit weakly stationary time series. However, in this work, the coefficients of the
model evolve with time and adapt to the non-stationarities of the signal. Assuming the VARMA
coefficients evolve according to a random walk in time, the Kalman Filter was used to update the
coefficients in time. The state vector composed of the VARMA coefficients is a Markov process
driven by a random walk in time. The first np rows of the vector correspond to the Autoregressive
coefficients while the remaining nq rows are associated with the Moving Average coefficients. In
this study, we compute the joint probability distribution functions (pdf) of subsets of coefficients
and observe their evolution in time. For example, results from the technique applied to the north
component of the crustal displacements recorded from EarthScope PBO at an example station
location (Figure 1) are shown here. To generate Figure 3, we computed the joint pdf of the
AR coefficients corresponding to the third IMF over twenty five-day time windows. Three peaks
clearly stand out from the picture, which suggests that the system undergoes three states during
that time. In the bottom picture, we show the segmented time series where the color changes
when a change in the successive pdfs is observed. The L2-norm was used in this specific case
for change detection; let ft(X) be the pdf of the VARMA coefficients X at time t, then change
occurs between time t− 1 and t if ‖ft(X)− ft−1(X)‖ > ε where ε is a small chosen threshold.
This process clearly identifies three different states of the time series.

It remains to be evaluated if this segmentation is robust, and if it might allow an association
of timeseries segments with long-term trends, precursory accelerated or decelerated slip, and
post-seismic transients. We are evaluating synthetic models with predefined changes in the time
series at present to fine tune the algorithm.

Reciprocal pole representation of TVAR model

This method investigates a time series representation based on the observation that the power
spectra of the signal changes with time. Time series are modeled using a popular stochastic
representation, namely the Autoregressive (AR) process. However, we let the order of the AR
processes as well as the corresponding coefficients change in time in order to adapt to dynamical
changes in the signal. Let

yt =

pt∑
i=1

Φi(t)yt−i + σtvt

be the AR representation of a time series {yt; t = 1, . . . , T}, then the reciprocal poles of the AR
characteristic polynomial Φt(u) = 1− Φ1u− . . .− Φptu

p are the eigenvalues of the matrix

G(Φ(t)) =

(
Φ1:pt−1(t) Φpt(t)

Ipt−1 0pt−1.

)

3



If we denote by Rt = (rt, ct) such that pt = rt + 2ct the number of real poles rt and complex
poles ct of the characteristic polynomial Φt(t) at time t, then we can recast it in terms of its
poles:

Φt(u) =
ct∏
j=1

(
1− ρje−2πiθj

) (
1− ρje2πiθj

) ct+rt∏
j=ct+1

(1− ρju)

where {αj = (ρj, θj); j = 1, . . . , ct} are the modulus and frequency of the jth complex root and
{αj = ρj; j = ct + 1, . . . , ct + rt} is the modulus of the jth real root. The algorithm sequentially
learns the hidden state Xt = (Rt, αt, σt) representing the poles of the characteristic polynomial
Φt(u) associated with the time varying AR model and the noise variance of the observation model:
yt =

∑pt

i=1 Φi(t)yt−i + σtvt.
The optimal filtering problem consists of the estimation of the posterior distributions p(X0:t|y0:t)

for t = 1, . . . , T , which can be recursively obtained from p(X0:t−1|y0:t−1) with Bayes formula.
Because Rt is a Markov chain taking discrete values and characterized by transition probabilities
and (αt, σt) is a Markov process with state transition functions, we use a particle filter algorithm,
which approximates the wanted conditional distributions with discrete probability measure defines
by weighted particles. For efficiency purposes, we combine importance sampling and resampling
techniques with the unscented Kalman filter to avoid degeneracy of the particle distribution in
time (Andrieu et al., 2003). We tried the algorithm on synthetic data presenting a transient in
its power spectra. Despite of the relatively high computational costs, the algorithm appears to
correctly identify the location and duration of the transient signal. We are working on a com-
parative analysis. Once both algorithms are more extensively tested, we intend to partake in the
actual SCEC transient detection exercise.

Conclusion

For the sake of analysis, we assume that the crustal deformation time series that are available
from the GPS network are the only representations of reality that we are confident about, minus
outliers and errors such as due to faulty stations, and harmonic signals that are of lesser interest,
such as those due to climatic changes. Data analysis is therefore an obligatory step to eventually
discover the fundamental mechanical drivers of the system. Because the processes affecting the
measurements act at multiple scales (Figure 1), we use the EMD in one case and an optimal
filtering technique in another case to distinguish the different frequency and amplitude modes in
each time series. The expansion of the analysis to the full GPS network data could potentially
allow us to define different states for the underlying physical process as well as identify the current
state of the system with the corresponding transition probabilities of the system jumping into a
different state.
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Figures

Figure 1: Original time series from PBO daily solutions for an example station location (north direction).
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Figure 2: Resulting IMF from EMD analysis performed on PBO daily solutions for an example station
location (Horizontal axis: Julian days, Vertical axis: mm), as in Figure 1.
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Figure 3: Top: time evolution of the autoregressive coefficient distribution for the third IMF. Bottom:
segmented time series with respect to changes in the AR coefficients distribution of the third IMF, based
on Figure 2.
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