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1 Introduction: Meso-scale modeling of the stress heterogeneity 
Computation of earthquake rupture processes requires a description of the input parameters at  

a length scale of the order of 100m to 500m (referred to as meso-scale lengths in this report). In this 
research project, we develop a procedure to generate meso-scale variability for stress profiles with 
an original spatial resolution of ~1 km or larger (that is at macro-scale lengths) typically obtained 
with kinematic inversion. This method can be used as a substitute to interpolating initial stress 
distribution derived in kinematic inversions (for brief discussions of the interpolation see among 
others Day et al., 1998; Spudich et al., 1998; and Mikumo et al., 2003). In this report, we summarize 
our findings assuming that the stress spatial variability is either distributed according to a Gauss law 
or a Cauchy law.   

 
2 Theoretical background and rationales. 

The procedure is based on the idea that the slip spatial distribution –or the stress spatial 
distribution derived from the slip spatial distribution (Andrews, 1980)- can be quantified and 
understood as a random process (Lavallée et al., 2006). As far as its statistical properties are under 
consideration, a slip spatial distribution is “statistically equivalent” to a synthetic random model of 
the slip spatial distribution (see Lavallée and Archuleta, 2003; see also Schmedes et al., (2009, 2010) 
for examples of synthetic stress spatial distribution). 

Now consider two synthetic stress profiles generated with the random model discussed in 
Lavallée and Archuleta (2003).  The two stress profiles are characterized by the same probability law 
and the same set of parameters. The two profiles have the same length 

€ 

L  but differ by their spatial 



resolutions.  The low-resolution profile 

€ 

τLR  has a spatial resolution 

€ 

ΔL = L /n  while the high-
resolution profile 

€ 

τHR  has a spatial resolution 

€ 

Δl = L /m  where 

€ 

m > 0  and 

€ 

n > 0 are even integer 
numbers with 

€ 

m > n  and thus

€ 

ΔL > Δl .  (For simplicity, we only discuss the case where 

€ 

m  and 

€ 

n  are 
even numbers.) In the Fourier domain, the (discrete) Fourier transform of 

€ 

τLR  is defined for a set of 
discrete wavenumber values in the interval 

€ 

0,2π × n −1( )[ ] while the (discrete) Fourier transform of 

€ 

τHR  is defined for a set of discrete wave number values in the larger interval 

€ 

0,2π × m −1( )[ ] . A 
high-resolution approximation of 

€ 

τLR  can be generated by performing the following computation. In 
the Fourier domain, the (additional) Fourier transform of 

€ 

τHR  (corresponding to the high resolution 
wavenumber values) can be grafted (at the proper location in the wavenumber interval) to the 
Fourier transform of 

€ 

τLR .  After grafting the additional Fourier coefficients, the Fourier inverse is 
computed and properly normalized (the normalization only involves a function of the parameters 

€ 

m  
and 

€ 

n , and it will depend on the definition used when computing the discrete Fourier transform) to 
get an approximation of 

€ 

τLR  at a resolution 

€ 

Δl . 
The procedure can be directly applied to the computed slip (or stress) spatial distribution 

from a kinematic inversion at a given macro-scale length 

€ 

ΔL .  First the parameters of the random 
model of the slip spatial distribution are computed (see Lavallée et al., 2006).  Then a synthetic slip 
spatial distribution is computed to the desired meso-scale length 

€ 

Δl .  The procedure outlined in the 
previous paragraph is computed. 

In the following sections, we discuss examples of the procedure for proxies of synthetic 
stress profiles.  (That is the proxies only differ by multiplicative and additive constants from the 
synthetic stress spatial distribution illustrated in Schmedes et al., (2009, 2010)).   The spatial 
resolution is defined for an arbitrary spatial unit.  

 
3 Modeling down scale heterogeneity:  The Gauss probability law 

The two profiles computed in this section are based on the random model discussed in 
Lavallée et al. (2006) for a Gauss probability law with the mean 

€ 

µ = 0  and 

€ 

σ =1 (see Figure 3.1).  
The parameter 

€ 

ν = 2 controls the power law attenuation of the spectrum proportional to 

€ 

k−ν  where 

€ 

k  
is the wavenumber in the Fourier domain (see Andrews, 1980). The low-resolution profile has a 
resolution 

€ 

ΔL =1 while the high-resolution profile has a resolution 

€ 

Δl = ΔL /5. 
 
The low-resolution stress profile 

is illustrated in Figure 3.2 with the low-
resolution stress profile modified 
according to the procedure discussed in 
Section 2 to include high-resolution 
heterogeneity (grafted from the high 
resolution proxy illustrated in Figure 
3.1).  In Figure 3.3, the spectra of the 
low-resolution stress profile, the high-
resolution stress profile and low-
resolution stress profile modified to 
include high-resolution heterogeneity 
are illustrated. 

The low-resolution profile is 
also computed to a resolution 

€ 

Δl = ΔL /5 using a linear interpolation 
Figure 3.1: Stress profiles with different resolutions. 



scheme (Figure 3.4).  In Figure 3.5, the spectrum of the interpolated profile is compared to the 
spectrum of low-resolution stress profile modified to include high-resolution heterogeneity.   

 

 

Figure 3.2: Illustration of 
the low-resolution stress 
profile modified to include 
high-resolution.  Note that 
the high-resolution 
variability (▲) is 
controlled by the same 
random process that 
defines the low-resolution 
stress profile (▽). 

 

Figure 3.3: Spectrum 
curves of the low-
resolution stress profile, 
the high-resolution stress 
profile and the low-
resolution stress profile 
modified to include high-
resolution heterogeneity. 

 
4 Modeling down scale heterogeneity:  The Cauchy probability law 

The two profiles computed in this section are based on the random model discussed in 
Lavallée et al. (2006) for a Cauchy probability law with the location parameter 

€ 

µ = 0  and the scale 
parameter 

€ 

γ =1.  The parameter 

€ 

ν = 2 controls the power law attenuation of the spectrum 
proportional to 

€ 

k−ν . The low-resolution profile has a resolution 

€ 

ΔL =1 while the high-resolution 
profile has a resolution 

€ 

Δl = ΔL /5. 



The low-resolution stress profile is illustrated in Figure 4.1 with the low-resolution stress 
profile modified according to the procedure discussed in Section 2 to include high-resolution 
heterogeneity. The low-resolution profile is also computed to a resolution 

€ 

Δl = ΔL /5 using a linear 
interpolation scheme.  In Figure 4.2, the spectrum of the interpolated profile is compared to the 
spectrum of the low-resolution stress profile modified to include high-resolution heterogeneity. 

 

 

Figure 3.4: Curve of the 
low-resolution stress 
profile modified to include 
high-resolution using a 
linear interpolation 
scheme.  Note that there is 
no irregular variability –as 
in Figure 3.1- for 
resolution smaller than 

€ 

ΔL =1.  

 

Figure 3.5: Spectrum 
curves of the low-
resolution stress profile, 
the low-resolution stress 
profile modified to include 
high-resolution 
heterogeneity and the low-
resolution interpolated to 
higher resolution.  
Attenuation of the 
spectrum curve for the 
interpolated low-resolution 
profile is significantly 
different from the two 
other spectrum curves (on 
this question see also 
Lavallée and Archuleta, 
2003).  

 
 



 

Figure 4.1:  Same as 
Figure 3.2 but for a stress 
profile generated with 
amplitude values 
distributed according to a 
Cauchy law. 

 

 
 

Figure 4.2:  Same as 
Figure 3.5 but for a stress 
profile generated with 
amplitude values 
distributed according to a 
Cauchy law. 
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