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Model-Based Geodetic Transient Detection 
 
Project Summary 
 
A research project has been completed at the University of Wisconsin-Madison by graduate 
student Summer Ohlendorf (a former SCEC intern) under the joint supervision of Professors 
Clifford Thurber and Kurt Feigl. The project evaluated a model-based approach to the detection 
of transient signals in geodetic time series. The basic strategy estimates the distribution of slip on 
the fault surface from geodetic data. Our approach provides two measures for detecting possible 
transients: changes in the slip model parameters and changes in the data fit. To validate this 
approach, we consider the transient postseismic signal observed at Parkfield, California, as 
recorded by continuous GPS in the years following the 2004 earthquake. We analyze how the 
two statistical measures vary with the duration of the time interval spanned by the GPS 
measurements. The signal-to-noise ratio of the total estimated slip to its uncertainty could, in 
principle, be used as a criterion to assess the significance of a transient signal. 
 
Data and Method 
 
The postseismic transient slip behavior along the San Andreas fault (SAF) following the  
Parkfield main shock on 28 September 2004 has been well documented (Johanson et al., 2006; 
Murray and Langbein, 2006; Langbein et al., 2006; Lienkaemper et al., 2006). Since most of the 
postseismic transient occurs during the first 230 days following the main shock, we restrict our 
analysis to the time interval beginning 29 September 2004 and ending 17 May 2005. We are 
particularly interested in determining in the length of the measurement interval required to yield 
a reliable detection of the transient. Since the postseismic transient decays with time, we adopt 
the latter date as our "stop time" and then analyze data spanning progressively longer intervals 
extending earlier (nearer to the date of the main shock). Accordingly, we denote the time interval 
in days as 

 !t ti i= "230  (1) 
Since shorter time intervals will contain less deformation than longer time intervals, we interpret 
our results in terms of the algorithm’s ability to detect a small transient. In other words, the 
“detection threshold” will depend on the length of the shortest time interval that yields a change 
that is significantly different from zero by at least one of the following two criteria: (1) the misfit 
of model to data, as measured by the chi-squared statistic; and/or (2) the confidence in the 
estimated fault slip, as measured by the ratio of the estimated total slip divided by its uncertainty. 
 
Following this strategy, we have modified the existing geodetic inversion algorithm of Murray 
and Langbein (2006). For a unit slip on each discrete element of the fault, the forward problem 
calculates the resulting displacement vector at each GPS station on the Earth’s surface. This 
information is assembled in a matrix of Green’s functions dimensioned to account for 489 fault 
elements and 13 GPS stations. The free parameters include one component (horizontal strike-
slip) of slip for each fault element. The data include the three components of displacement (with 
respect to reference station CRBT) and their scaled uncertainties estimated from the GPS 
position time series over the relevant time interval (Figure 1). In addition, the data from the 
USGS alinement [sic] arrays (Lienkaemper et al., 2006) are also included, as in Murray and 
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Langbein (2006). The fault is parameterized using a triangular mesh (Figure 2). The elastic 
properties are assumed to be uniform throughout the half space with a Poisson’s ratio equal to 
0.25. To regularize the problem, a smoothing operator is imposed, as discussed in Maerten et al. 
(2005). The optimal weighting value of this smoothing operator is selected by cross-validation, 
as shown in Figure 3. In addition, the estimated slip values must all be right-lateral. This 
constraint is imposed by the non-negative least squares algorithms implemented in the Matlab 
routines NNLS, LSQLIN, or LSEI_ML (Lawson and Hanson, 1974; Hanson and Haskell, 1982). 
To describe long-term interseismic motion, three of the fault elements are constrained to slip at 
constant rates of 27 ± 1.5 mm/yr for the creeping section of the SAF northwest of Parkfield, 
1 ± 1 mm/yr for the locked section of the SAF southeast of Parkfield, and 32.6 ± 1 mm/yr below 
the seismogenic depth of 14 km. 
 
To evaluate the misfit of the model to the data, we calculate, for each time interval, a chi-squared 
statistic  
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where the “observed” displacement u(obs), its uncertainty σ, and the modeled displacement u(model) 
have each been estimated from the GPS time series over the time interval Δti. As shown in 
Figure 4, the misfit does not exhibit any simple relationship with the time interval. Accordingly, 
a detection criterion based on misfit alone would not be sensitive to transient signals. 
 
As an alternative to a criterion based on the misfit of the model to the data, we consider a 
criterion based instead on the estimated model parameters and their uncertainties. To find the 
uncertainty of the estimated slip parameters, we have explored three options: jack-knife 
(Tichelaar and Ruff, 1989), boot-strap (Efron and Tibshirani, 1986) and a constrained least-
squares algorithm called LSEI (Hanson and Haskell, 1982). The three approaches yield different 
results for estimated total slip U(est) (summed over all elements on the fault) and its uncertainty 
σU, as shown by the dashed lines in Figure 5.  
 
The jackknife approach finds large values (± ~ 5 m) for the uncertainty σU of the total slip. In 
calculating these values, we applied equation (5) in Tichelaar and Ruff (1989) 
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where θ is the model parameter estimated from various jackknife subsets of the data, p = 489 is 
the number of parameters, n is the number of data, and k is the size of each jackknife subset. To 
evaluate this expression, we first remove the three displacements for each GPS station in turn, 
thus setting the subset size to k = n – 3. Second, we set the “weights” w*

i to unity. Third, we set n 
to the total number of equations (582) to account for the constraint equations. As a result, the 
variance factor (k – p + 1)/(n – k) is approximately 20.  This value may be too large because it 
treats the constraint equations as independent. On the other hand, this value is of the same order 
of magnitude as the chi-squared χ2 statistic (20 to 40). The latter value can also be used to 
account for the number of degrees of freedom in constrained solutions (Aster et al., 2005). The 
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bootstrap algorithm yields small uncertainties (black crosses labelled “boot” in Figures 4-6), 
presumably because it under-estimates the uncertainties of the observed displacements. Although 
the diagonal elements of the data covariance matrix have been scaled to reflect scatter in the 
residuals, the off-diagonal elements are assumed to be null, neglecting correlations between the 
displacements at neighboring stations.  
 
The LSEI algorithm (blue circles labeled “lsei” in Figures 4-6), yields uncertainties for the total 
slip that decrease with increasing duration of the time interval Δti, as expected. The LSEI is the 
only one of the three approaches to exhibit this (useful) attribute. In other words, the LSEI 
algorithm returns a statistic that is a sensitive measure of uncertainty. 
 
To assess the confidence of the estimated model parameters, we calculate, for each time interval, 
the ratio of the “signal” (total slip U(est)) to the “noise” (uncertainty σU) as  
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The value of the signal-to-noise ratio R of the model estimate of the total slip U(est) to its 
uncertainty σU from equation (4) as a function of time interval Δti increases with increasing 
duration of the time interval, as shown in . The LSEI estimates (blue circles) increase from R ~ 
10 for a short 30-day interval to R ~20 for a longer 130-day interval. Accordingly, this measure 
could be used as a criterion for detection. 
 
Conclusions 
 
The signal-to-noise ratio R of the total estimated slip to its uncertainty increases with the 
duration of the time interval. Although the three different approaches for calculating the 
uncertainty yield results that vary widely, each could be used individually to compare different 
time intervals. This ratio could, in principle, be used as a criterion to assess the significance of a 
transient signal such as the postseismic deformation following the 2004 Parkfield earthquake. 
Detecting transient phenomena on earthquake-capable faults is a high-priority goal for SCEC, 
appearing as objective A5 to “develop a geodetic network processing system that will detect 
anomalous strain transients.” Our work has contributed directly towards this high priority 
objective by demonstrating the feasibility of a novel approach for transient detection. As a next 
step, this approach could be applied to the SCEC Community Fault Model (CFM) using GPS 
data from southern California. Toward this end, our revised Matlab source code, including the 
uncertainty analyses, has been returned to its original author, Jessica Murray-Moraleda at the 
USGS in Menlo Park. She deserves our thanks for generously sharing the code and taking the 
time to help us with it. 
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Figures 
 

 
Figure 1. Example of displacement vectors for the full 230-day long postseismic time interval 
beginning 29 September 2004 and ending 17 May 2005, showing observed displacement (blue) 
and modeled displacements (red arrows). Ellipses include the area of 95 percent confidence, after 
scaling by the estimated variance factor. 
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Figure 2. Slip distribution estimated from the GPS data for the full 230-day long postseismic 
time interval beginning 29 September 2004 and ending 17 May 2005. This 3-dimensional 
representation shows the flexible triangular mesh for representing a complex fault surface, as 
developed by Murray and Langbein (2006). The boxes along the earth’s surface denote the 
locations of the USGS alinement [sic] arrays (Lienkaemper et al., 2006). 

 
Figure 3. Optimal value of smoothing parameter (horizontal axis) is identified by the smallest 
value of the cross-validation sum of squares CVSS (vertical axis). The star denotes the optimal 
value of the smoothing parameter γ = 31.62 used in all subsequent runs. 
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Figure 4. Misfit of modeled to 
observed displacement, as 
measured by chi-squared statistic 
χ2, as a function of time interval, as 
calculated in equation (2). The 
three different curves reflect 
different schemes for estimating the 
model parameters and their 
uncertainties: jackknife (red curve 
with asterisks labeled “jack”), 
constrained least squares (blue 
curve with circles labeled “lsei”), 
and bootstrap (black curve with 
crosses labeled “boot”).  
 

 

Figure 5. Estimated total slip U(est) 
(solid lines) and its uncertainty σU 
(dashed lines) as a function of time 
interval. 
 

 

Figure 6. Model uncertainty, as 
measured by the “signal to noise” 
ratio R of the total slip U(est) to its 
uncertainty σU from equation (4) as 
a function of time interval. 
 
 

 
 


