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1. Intr oduction

A major motivation for measuring crustal deformation has always been the search for pos-
sible temporal fluctuations; this is, for example, one of the scientific goals of the Plate Boundary
Observatory (PBO). Such fluctuations are of intrinsic interest, and there has always been the
possibility that, if detected, they might serve as possible signs of higher periods of earthquake
risk. But many claimed changes have been close to the noise levels of the methods available,
with better data showing that the changes actually were just noise.

The high precision of GPS has made it possible to detect phenomena never seen before:
postseismic deformations have been observed well enough to support inferences about crustal
rheology; and transient deformations have been observed at many subduction zones. At the same
time, the low cost of GPS has greatly expanded the amount of data: in southern California alone
about 450,000 daily displacement numbers are produced each year.

In light of this, the SCEC geodesy group has promoted the development of methods to
examine these data for possible changes in deformation rate.Such methods should detect and
localize any temporal variations; in the absence of any detections, they could bound temporal
variations in strain accumulation.

In August 2008 SCEC supported a small workshop on this problem, which concluded that
SCEC geodesy could usefully follow a procedure used by other elements of SCEC: encouraging
systematic comparisons between different methods. Such comparisons, when applied to codes
for modeling seismic rupture, have clarified discrepancies and resulted in much more reliable
modeling codes. The workshop also concluded that such a comparison should begin on synthetic
data sets, as similar as possible to real data, but with the noise and any signal known (at least to
the person producing the ‘‘data’’), and that the synthetic data should be created by someone not
pursuing the detection problem, and provided as a blind test.

I received funding to provide such synthetic datasets; as described below, this was done by
developing a software package (FAKENET) for simulating the random behavior of geodetic data
and combining this with the motions expected from different sources. An early version of this
package was used to produce datasets used in the Phase I tests in early 2009, and a later version,
described below, produced data for the Phase II tests (summer 2009 and ongoing).
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2. DataModels

The basic data model is that the time series at thei-th site, on thej -th day is

dij = vi (t j − t0) + cij + nij +
N

n=1
Σ Gin ⋅ snj

wheredij is the vector displacement, decomposed into (1) a station velocity vi ; (2) a noise partcij

which is common to more than one station; (3) a second noise partnij peculiar to that station;
and (4) a signal part, computed as a sum over slipping fault patches, wheresnj is the (vector) slip
on then-th patch. Gin is the Green function relating slip to displacement: for this we use the
usual expressions for a dislocation in a half-space.

We then need statistical models for the noisec andn; ‘‘statistical’’ meaning that the mathe-
matical model uses random variables, and the simulations use pseudorandom deviates with the
same probability behavior. Dev eloping such models for GPS time series has been recognized as
important since Johnson and Agnew (1995) pointed out the importance of random-walk motion
in estimating uncertainties for station velocities. Subsequentwork (Langbein and Johnson 1997,
Zhanget al.1997, Wdowinski et al.1997, Maoet al.1999, Williams 2003, Williams et al.2004,
Beavan 2005, Langbein 2008, Boset al. 2008, Williams 2008) has shown that it is useful to
decompose the noise into several elements.

Figure 1

First of all, there is substantial spatial correlation in the displacements between nearby
sites, though this diminishes with station separation.We can represent this correlated noise as a
blend of several time series:

c =
K

k=1
Σ Wk(θ ,φ )ck(t)

where theW’s are K functions of position, designed to sum to 1.0 at all locations but have max-
ima in different places; each is associated with different a vector noise function of time,ck(t).
Figure 1shows how this works: five seriesc are generated at the points shown by the brown cir-
cle and red stars, and the time series at any point are weighted sums of these. The right-hand
side shows how this noise varies along a NS profile, mimicking the behavior seen in actual GPS
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data. Theactual form ofc usually needs to include both random and seasonal signals; seasonal
signals also are present at many of the individual stations, and need to be included in the individ-
ual seriesn.

At most GPS stations the station noisen is temporally correlated out to very long times,
which is what statisticians call a long-memory process, and is also represented by power spectral
densitiesP( f ) that rise with decreasing frequency. Most analyses suggest that combinations of
white P∝ f 0, flicker P∝ f −1, and random-walk P∝ f −2 noises are a good first approximation to
the data, though better fits are obtained with general power-law noises (P∝ f −α ).

Figure 2

3. Program Package

In its current form, theFAKENET package consists of Fortran-77 programs, a detailed user
manual, and data files.Each program reads in a set of commands which cause each program to
read from input files, and write to one or more output files.The displacement timeseries pro-
duced include (1) velocities, randomly perturbed by an amount set by the user; (2) gaps, as speci-
fied by an input file; (3) randomly-assigned noise levels for each time series, with noise types
including white, flicker, and random-walk; (4) common-mode noise (including sinusoidal varia-
tions) that decorrelates with increasing distance between stations; and (5) signals from slip on
faults, including propagating slip, with time constants and time variations set by the user.

The package produces a set of files, each containing the timeseries for a particular site;
these are combined into a single compressed tarfile, which, like the individual files, is assigned a
unique name depending on when the package was run. The program also generates alog file,
which documents the actual settings of the inputs, so that the input files can be recreated and the
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program rerun; this log file serves as an ‘‘audit trail’’ f or what was done.

For ease of use (in Southern California, at any rate), the current distribution includes, from
the SCEC Community Fault Model, the rectilinear approximations to faults, adjusted to make the
top and bottom edges horizontal. The distribution also includes files of station coordinates, net-
work performance, and station velocities, all derived from the SOPAC time series distribution
and metadata; and also a file of noise parameters (provided by John Langbein) from which sam-
ples are randomly drawn to set the station noise parameters.

Figure 2 shows how simulated time series are created. The main program (fakenet)
reads from several input files; these describe the station locations and velocities, the slip on
faults, the parameters for common-mode noise, and so on.The program also reads instructions
given in acommand file, which contains multiple lines of commands with parameters. Some of
the input files forfakenet are generated by other programs:slipmake produces the file giv-
ing fault slip time histories, andcommake creates the file for common-mode noise; making
these programs separate has simplified development and debugging. Theseprograms also read
both command and input files.For commake, the inputs are files of station locations and noise
parameters; forslipmake, a file of fault geometry.

A simulation program needs a ‘‘good’’ pseudorandom number generator; this package uses
the ‘‘Mersenne twister’’ of M atsumoto and Nishimura (1998), which passes all the tests of
L’ Ecuyer and Simard (2007). Noise models now implemented include random-walk, flicker, and
white noise, using algorithms from Thomaset al.(2007), and R. Voss (in Gardner 1978).

Figure 3

The existing package uses a fixed set of on-off times, taken from the SCIGN analysis to
represent data gaps, and the start and end of a particular station.Figure 3shows several features
of the SCIGN timeseries.The left plot inFigure 3 is a histogram of durations of intervals of
data being available, or not; the ‘‘on’’ t imes are roughly hyperbolically distributed up to a cutoff
time, a much heavier-tailed distribution than would be expected from a Poisson process (fortu-
nately); the durations of ‘‘off’ ’ periods are much more tightly clustered around small values. The
right-hand side ofFigure 3 shows that outages in southern California GPS stations also have a
definite variation with time of year.

As noted above, if the random components are set to zero,FAKENET can be used for con-
ventional forward modeling. By providing standard noise models, it should also aid in the devel-
opment of analysis tools for GPS data; to circle back to the start of this report, if we are going to
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look for signals we had better understand the noise.

TheFAKENET package is freely available.
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