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1. Introduction

A major motwation for measuring crustal deformation hasais been the search for pos-
sible temporal fluctuations; this is, for example, one of the scientific goals of the Plate Boundary
Obsenatory (PBO). Such fluctuations are of intrinsic interest, and there wagsabeen the
possibility that, if detected, tiiamight sene as ssible signs of higher periods of earthqak
risk. Butmary claimed changes ka keen close to the noisevids of the methodsvailable,
with better data showing that the changes actually were just noise.

The high precision of GPS has made it possible to detect phenome&naaen before:
postseismic deformations e keen observed well enough to support inferences about crustal
rheology; and transient deformationy@deen observed at masubduction zones. At the same
time, the lov cost of GPS has greatly expanded the amount of data: in southern California alone
about 450,000 daily displacement numbers are produced each year.

In light of this, the SCEC geodesy group has promoted tixdogenent of methods to
examine these data for possible changes in deformation $ateh methods should detect and
localize ay temporal variations; in the absence of aletections, the could bound temporal
variations in strain accumulation.

In August 2008 SCEC supported a small workshop on this problem, which concluded that
SCEC geodesy could usefully folNaa procedure used by other elements of SCEC: encouraging
systematic comparisons between different methods. Such comparisons, when applied to codes
for modeling seismic rupture, Y& darified discrepancies and resulted in much more reliable
modeling codes. The workshop also concluded that such a comparison slgoulonbgynthetic
data sets, as similar as possible to real data, but with the noiseyasignah known (at least to
the person producing th&lata”), and that the synthetic data should be created by someone not
pursuing the detection problem, and provided as a blind test.

| receved funding to provide such synthetic datasets; as described, liei® was done by
developing a software packagEAKENET) for simulating the random behavior of geodetic data
and combining this with the motions expected from different sources. An early version of this
package ws used to produce datasets used in the Phase | tests in early 2009, anési@ater v
described belw, produced data for the Phase Il tests (summer 2009 and ongoing).



2. DataModels
The basic data model is that the time series attheaite, on thg-th day is

N
dij =Vi(tj —to) + G + nj + zlGin K=
n=

whered; is the vector displacement, decomposed into (1) a statiogity v;; (2) a noise part;
which is common to more than one station; (3) a second noise;ppeculiar to that station;
and (4) a signal part, computed as a swan gipping fault patches, whei®; is the (\ector) slip

on then-th patch. G, is the Green function relating slip to displacement: for this we use the
usual expressions for a dislocation in a half-space.

We then need statistical models for the nasendn; “‘statistical’ meaning that the mathe-
matical model uses random variables, and the simulations use pseudorandom deviates with the
same probability belvéor. Devdoping such models for GPS time series has been recognized as
important since Johnson and AgnéL995) pointed out the importance of random-walk motion
in estimating uncertainties for statioalecities. Subsequemtork (Langbein and Johnson 1997,
Zhanget al. 1997, Wdaevinski et al. 1997, Macet al. 1999, Williams 2003, \lliams et al. 2004,

Beavan 2005, Langbein 2008, Bost al. 2008, Williams 2008) has shown that it is useful to
decompose the noise intoreral elements.

Common—Mode Noise Model
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Figure 1

First of all, there is substantial spatial correlation in the displacements between nearby
sites, though this diminishes with station separatMe. an represent this correlated noise as a
blend of seeral time series:

c= 3 Wi(, 9ol
k=1

where théW'’s are K functions of position, designed to sum to 1.0 at all locations lwet imax-
ima in different places; each is associated witfeteht a vector noise function of timg(t).
Figure 1shavs haw this works: five sriesc are generated at the points shown by the brown cir
cle and red stars, and the time series gtpmnt are weighted sums of these. The right-hand
side shows ha this noise varies along a NS profile, mimicking the behaseen in actual GPS
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data. Theactual form ofc usually needs to include both random and seasonal signals; seasonal
signals also are present at mani the individual stations, and need to be included in theichdi
ual series.

At most GPS stations the station noisé temporally correlated out to very long times,
which is what statisticians call a long-memory process, and is also representecebgmpectral
densitiesP( f) that rise with decreasing frequgndvost analyses suggest that combinations of
white PO 2, flicker PO, and random-walk PO f 2 noises are a good first approximation to
the data, though better fits are obtained with general powerdses PLf ™).
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3. Program Package

In its current form, th&AKENET package consists of Fortran-77 programs, a detailed user
manual, and data file€€ach program reads in a set of commands which cause each program to
read from input files, and write to one or more output filEse displacement timeseries pro-
duced include (1)elocities, randomly perturbed by an amount set by the user; (2) gaps, as speci-
fied by an input file; (3) randomly-assigned noiseslke for each time series, with noise types
including white, flicker, and random-walk; (4) common-mode noise (including sinusoidabv
tions) that decorrelates with increasing distance between stations; and (5) signals from slip on
faults, including propagating slip, with time constants and time variations set by the user.

The package produces a set of files, each containing the timeseries for a particular site;
these are combined into a single compressed tarfile, whiehth&kindividual files, is assigned a
unique name depending on when the package was run. The program also gerlegafis a
which documents the actual settings of the inputs, so that the input files can be recreated and the
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program rerun; this log file serves as an “audit tradf what was done.

For ease of use (in Southern California, ay aate), the current distribution includes, from
the SCEC Communitydult Model, the rectilinear approximations to faults, adjusted tcerimek
top and bottom edges horizontal. The distribution also includes files of station coordinates, net-
work performance, and station velocities, all dedti from the SORC time series distristion
and metadata; and also a file of noise parameters (provided by John Langbein) from which sam-
ples are randomly drawn to set the station noise parameters.

Figure 2 shovs hav simulated time series are created. The main progfaak€net )
reads from seeral input files these describe the station locations and velocities, the slip on
faults, the parameters for common-mode noise, and sdbea.program also reads instructions
given in acommand file which contains multiple lines of commands with parameters. Some of
the input files foff akenet are generated by other prograrsbki prmmake produces the file gt
ing fault slip time histories, andommake creates the file for common-mode noise; making
these programs separate has simplifieceldpment and delgging. Thesgrograms also read
both command and input filessor commake, the inputs are files of station locations and noise
parameters; fosl i pmake, a file of fault geometry.

A simulation program needs g@o6od” pseudorandom number generator; this package uses
the “Mersenne twister’of Matsumoto and Nishimura (1998), which passes all the tests of
L' Ecuyer and Simard (2007). Noise modelgvnmplemented include randomailk, flicker, and
white noise, using algorithms from Thonetsal. (2007), and R. Voss (in Gardner 1978).
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Figure 3

The existing package uses aefixset of on-dftimes, taken from the SCIGN analysis to
represent data gaps, and the start and end of a particular skEagane 3showvs seeral features
of the SCIGN timeseriesThe left plot inFigure 3is a histogram of durations of intervals of
data being&ilable, or not; the‘'on’” times are roughly yperbolically distributed up to a cufof
time, a much heaer-tailed distribution than would bexpected from a Poisson process (fortu-
nately); the durations ofoff’’ periods are much more tightly clustered around snadlles. The
right-hand side ofigure 3 shawns that outages in southern California GPS stations als® da
definite variation with time of year.

As noted abwee, if the random components are set to zZEAKENET can be used for con-
ventional forward modeling. By pxading standard noise models, it should also aid in thel-de
opment of analysis tools for GPS data; to circle back to the start of this report, if we are going to
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look for signals we had better understand the noise.
The FAKENET package is freelywailable.
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