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1 Numerical Simulations Earthquake Rupture Propagation Under Heterogeneous 

Conditions 
In this research project, we consider a simple configuration for the fault model based on the 

fault model used in “SCEC 3D Rupture dynamics, Validation of the Numerical Simulation Method” 
(Harris et al., 2005). The following settings are adopted for the faults. We consider a rectangular 
vertical fault of 30 km by 15 km.  A square nucleation patch (or asperity) is located in the center of 
the fault with dimension of 3 km by 3 km.  In the nucleation patch, the initial shear stress is along 
the strike direction and is set to 81.6 MPa. The nucleation point is at the center of the square 
nucleation patch.  Except for the initial shear stress, all the other parameters used in these 
simulations such as the initial yield stress and the parameters of a linear slip-weakening friction law 
(Ida, 1972), are uniform across the fault surface. The parameters are listed in Harris et al., (2005). 
The initial shear stress along the dip direction is set to 0 everywhere on the fault surface. The 
material properties of the medium surrounding the fault are given by vp = 6000  m/sec, vs = 3464  

m/sec and the density is 2670 kg/m3. The basic idea with these simulations is to capture and isolate 
the effect of the shear stress variability on the rupture.   

Except for the square nucleation patch described above, the initial shear stress along the 
strike direction is spatially heterogeneous. We used a random model to describe the shear stress 
heterogeneity.  A random model is specified by a set of random variables and by the rules used to 
transform the random variables.  Here we consider two situations: the random variables are 
distributed over a two-dimensional grid according to a Gauss law (see Liu-Zeng et al., 2005) or 
according to Cauchy law (see Lavallée and Archuleta, 2003: Lavallée et al., 2006; and Liu et al. 
2006). The rules are essentially given by a generalization of the fractional Brownian motion to 
Cauchy (or more generally Lévy) random variables.  It consists in a filtering in the two-dimensional 
Fourier space of the Fourier transform of the random variables by a function given by k 2D  where 
k = k  is the 2D radial wavelength number. We consider four values for the parameters 2D: 0, 1/2, 1 
and 2.  The values 0, 1 and 2 are based on model of slip distributions with a Fourier amplitude 
characterized by an exponent 2D +1=1 (Lomnitz-Adler and Lemus-Diaz, 1989), 2D +1= 2  



(Herrero and Bernard, 1994) and 2D +1= 3 (Hanks, 1979) – see also Figure 3 of Herrero and 
Bernard (1994). Note that 2d = 0 corresponds to white noise and no filtering is needed. 

The following procedure is devised to generate the shear stress spatial heterogeneity with a 
given value 2D.  Gauss random variables are generated using μGauss = 0  and Gauss =1.  The random 
model is computed according to the procedure discussed above (for details see Lavallée et al., 2006). 
The random model is normalized by the maximum value to obtain a distribution of values that varies 
approximately from 1 to +1.  Adding 7 to the normalized random model and multiplying the 
resulting field by 107 give the random shear stress spatial distribution. Due to these normalizations, 
the random shear stress spatial distribution ranges approximately between 60 and 80 MPa. The 
maximum value doesn’t exceed the shear stress value of 81.6 MPa.  A similar procedure is used to 
generate Cauchy random variables (with μCauchy = 0  and Cauchy =1) with an additional constraint.  The 

range of the Cauchy random variables has to be limited between a minimum value and a maximum 
value.  (This problem can be ignored for Gauss random variables since the probability to generate 
extremely large values is very small and in practice can be ignored.) Although we compute scenarios 
of rupture for different set of values of minimum and maximum (-10 to 10, -15 to 15, -20 to 20 and -
25 to 25) we only discussed the results obtained for a range of random variables that goes from -15 
to 15.  Then the same filtering and normalization are performed to obtain the random shear stress. 

It should be noted that random shear stress generated according to this procedure is also 
distributed according to a Gauss (or Cauchy) law, but with the parameters μGauss (or μCauchy) and Gauss 

(or Cauchy) function of the position on the fault (for details see Lavallée, 2007).  Note also that 

scenarios of shear stress based on Gauss random variables have the same range of values than those 
of the scenarios of shear stress based on Cauchy random variables.  However, frequency of large (or 
small) fluctuation from the “average” of 70 MPa is significantly more important for shear stress 
distributed according to a Cauchy law.  This difference seems to affect the propagation of the 
rupture. 

Using the model discussed above, we developed eight banks of scenarios of shear stress 
heterogeneity. They are divided into two groups. The first group includes four banks based on the 
same Gauss parameters, and the second group includes four banks based on the Cauchy parameters. 
Within each group, the four banks of scenario only differ by the value of the parameter 2D. We 
used a 3D finite element (FE) codes developed by S. Ma (Ma, 2006), to simulate the rupture 
initiation and the propagation of the rupture under heterogeneous conditions. Snapshots of the 
dynamic rupture process are illustrated in Figure 1. 

An additional complication when computing scenarios of rupture under heterogeneous 
conditions is the interruption of the rupture process before the rupture front reaches the fault limits. 
It is certainly not obvious that each statistically similar slip distribution will lead to a dynamic 
rupture that sweeps over the entire fault.  (Some additional criteria may have to be found to solve 
this problem–see Vidal et al. 2000).  This behavior is a consequence of the spatial variability in the 
shear stress.  However the interruption is not systematic and our results suggest a dependence on the 
degree of correlations of the shear stress controlled by the parameter 2D.   

When the parameter 2D = 0  or , fluctuations in shear stress are spatially punctual ( 2D = 0) 
or located over patch areas of small dimensions ( 2D =1/2).  The surface dimension of the patches is 
not large enough to affect the propagation of the rupture fronts.  For all the scenarios of rupture 
computed with the Gauss law and the Cauchy law, the rupture spreads over the fault surface.  The 
presence of the shear stress heterogeneity essentially produces deformations of a rather smooth 
rupture front (See Figure 2).  



When the parameter 2D =1, some irregular patterns of larger dimension appeared in the 
shear stress spatial distribution.  These patterns have two main consequences.  The first is the 
interruption of the rupture process when the rupture front leaves the central nucleation patch.  These 
interruptions are observed for 30% of the Gauss scenarios and 20% of the Cauchy scenarios. For 
10% of the Gauss scenarios and 10% of the Cauchy scenarios the rupture covers between 50% and 
90% of the fault before before stopping.  Finally for 70% of the Gauss scenarios and 60% of the 
Cauchy scenarios the rupture process covers more than 90% of the fault area.  Deformations of the 
rupture front are significantly more important for scenarios generated with 2D =1 (see Figure 2). 

 

  

  
Figure 1: Snapshots of the simulations of the dynamic rupture model in a homogeneous elastic medium at 
different time interval for a Cauchy scenario with 2D =1.  The slip velocity and the shear stress are 
illustrated.  Rupture starts from a finite initial asperity and initially grows in all direction. After the initial 
phase, the propagation of the rupture  front is gradually becoming asymmetrical with respect to the initial 
square nucleation patch.  This behavior is typical of simulations with 2D =1 and 2D = 2 . 



 
Finally when 2D = 2 , irregular patterns of large dimensions characterized the shear stress 

spatial distribution.  The presence of large fluctuating spatial patterns of high and shear stress 
accentuates the behavior reported for the scenarios computed with 2D =1.  There is a larger number 
of interruptions after the rupture front leaves the central nucleation patch.  Such interruptions are 
observed for 40% of the Gauss scenarios and 30% of the Cauchy scenarios. For 40% of the Gauss 
scenarios and 50% of the Cauchy scenarios the rupture process covers between 50% and 90% of the 
fault area.  Finally, for 20% of the Gauss scenarios and 20% of the Cauchy scenarios the rupture 
process covers more than 90% of the fault surface.  For 2D = 2 , the rupture front time evolution is 
more complicated as suggested by the curves of the rupture front in Figure 2. 

 
2 Discussion 

According to these results, the degree of correlation in the initial shear stress, controlled by 
the 2D, constrained the propagation of the rupture fronts.  The behavior is reminiscent of 
percolation theory, except that in percolation theory, observation of percolation is related to 
connecting the two opposites of the system under consideration by one unbroken chain of nearest 
neighbors (see Stauffer and Aharony, 1994). This is usually done by investigating the distribution of 
values in the system under consideration, i.e., the one-point statistic. However the percolation is not 
conditional to the degree of correlation characterizing the system under consideration. 

Through the disorder that characterizes earthquake spatial distribution, many authors have 
identified the importance of spatial pattern. For instance, and to keep it with stress spatial variability, 
it has been argued that the presence of patches with high stress values is essential for rupture to 
expand. Assuming different planar fault geometry, Andrews (1976) and Day (1982) have computed 
the critical lengths characterizing the size of the minimum patches. Introducing the effect of 
lubrification in fault mechanics, Brodsky and Kanamori (2001) note that many discontinuous 
lubricated regions are required at the surface of the fault in order to observe slipping. In numerical 
modeling the 1994 Northridge, California, earthquake, Nielsen and Olsen (1999) not only concur 
that high stress patches on the fault are needed for rupture to process, but they also introduce the idea 
that connectivity between the patches is also essential for the progression of the rupture front. 
According to Madariaga and Olsen (2002), rupture propagation is controlled by a non-dimensional 
parameter (corresponding approximately to the ratio of the available strain energy to the energy 
release rate).  Rupture propagation is conditional to exceeding a critical value of the non-
dimensional parameter. Interruption of the rupture process for heterogeneous distribution of stress 
has also been reported in the Peyrat et al. 2001.  The results obtained in our study suggest that the 
factor impeding or limiting the rupture process is the degree of correlation (or two-points statistic) 
characterizing the initial shear stress.   



 

  

  

  

  
Figure 2: Plot of the rupture time on the fault plane.  On the left side, scenarios of ruptures based on 
Gauss random variables. On the right side scenarios of ruptures based on Cauchy random variables. 
From top to bottom the parameter 2D takes values 0, , 1 and 2.  
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