
2003 SCEC Annual Report

Project Title: Quantifying Uncertainty in Finite Fault Inversion
Principal Investigators: Peng-Cheng Liu and Ralph J. Archuleta
Institution: Institute for Crustal Studies, University of California, Santa Barbara

Introduction
Inversion of seismic data to determine the kinematic parameters on a finite fault

(hereafter called finite fault inversion) is currently the most general method to determine the
spatial and temporal rupture process of large earthquakes. Although finite fault inversions have
become almost routine in the study of large events, the determined source model contains
significant uncertainty. In practice, the uncertainty in the final solution can arise from several
factors, such as, the data set being inverted is incomplete.

Seismic records, especially records in the near-source region, are the basic, and generally
the most available information, used in finite-fault inversion to resolve detailed aspects of the
rupture process. From a statistical point of view, these records are a sample of ground motion
generated from an earthquake. Normally the size of the sample is not sufficiently large. In
addition to the limited number of observers, their spatial coverage affects the inversion of ground
motions (Olson and Anderson, 1988). Obviously the incomplete data set is one of the important
sources of uncertainty.

In this report, we apply a bootstrap statistical method to estimate the variation in finite
fault parameters induced by an incomplete data set. We reanalyze seismic data from the 1989 M
7.1 Loma Prieta earthquake and quantify the variation in the source model determined for this
earthquake. Hartzell and Iida (1990) had quantified the variations in the two slip components of a
finite fault. In their study, a rupture velocity is prescribed (in this case, determining two slip
components for each subfault is a linear inversion problem), the L2 norm is used as objective
function, and the misfit between synthetic and recorded data is implicitly assumed to follow
Gauss distribution. Our study is more general. We have estimated the variation in the rupture
velocity and risetime, as well as the slip amplitude and rake, of a finite fault source, without any
assumption on the probability distribution.
The Implementation of Bootstrap Method

The bootstrap is a re-sampling procedure (Efron, 1982). The practical application of the
bootstrap method usually requires generating a large number of bootstrap samples. An estimate

† 

q* of the parameter q is derived from each of these samples. In general, a typical bootstrap
sample differs from the original sample because some of the observations will be repeated
several times, and some will not occur at all. Consequently, the value of 

† 

q* will vary from one
bootstrap sample to the next. By statistically analyzing all the resulting 

† 

q* the variance of
parameter q can be determined.

The application of the bootstrap method to quantify the variation in finite fault inversion
is straightforward:

1. Randomly generate a bootstrap data set of size N with replacement from the original
recorded data set. N is the number of original data.

2. Find a solution of source parameters P={p1, p2, º, pM} by minimizing the difference
between bootstrap data and corresponding synthetics where M is the number of free
source parameters.

3. Repeat steps 1 and 2 K times.



Having K solutions, P1, P2, º, PK, we can represent the covariance matrix of the best model 

† 

P
as
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Where the best model 

† 

P is defined as the solution determined from inversion of the original data
set. The

† 

i thdiagonal element of the covariance matrix Cp  is the variance of the best source
parameter 

† 

p i . The square root of variance gives the standard deviation, which is a measure of
uncertainty in the best solution of the source parameter. It is worth pointing out that the 

† 

P  used
in (1) is the best source model instead of the mean of all bootstrap models. This choice is
suggested by Chernick (1999) because the resulting estimate should be closer to the true
covariance matrix of 

† 

P . For estimating standard deviations, K is recommended to be at least 100
(Chernick, 1999).
Variation in the Source Model of the Loma Prieta Earthquake

To stress the effect of an incomplete data set on the finite fault inversion, we selected
only 16 three-component stations in the near-source region of the Loma Prieta earthquake. The
Green’s functions are calculated from the 1D velocity model used by Wald, et al. (1991).
Because there is no Q value in this 1D model, we assume QP=2QS and QS=0.1VS, where the units
of VS is m/s. Both the observed data (ground veloctities) and Green’s functions are bandpassed in
the frequency range 0.05–1.0!Hz. Some of the strong motion records do not have trigger time
information. For these stations the synthetic shear wave from the hypocenter is aligned with the
first impulsive S wave in the data. A two second time shift is also used to account for the
triggering of the Loma Prieta earthquake by a small event that did not trigger the strong motion
accelerographs (Wald et al., 1991).

We chose the same fault model as Wald, et al. (1991)—strike of 128°, dip of 70° to the
southwest. The fault measures 41.25 km in length and extends from a depth of 1.5 km to 20.3
km, giving a down-dip width of 20 km. The hypocenter is at 37.04°N, 121.88°W, with a depth of
18 km. For simplicity the fault area is discretized into 15 rectangular elements along strike and 8
elements downdip for a total of 120 subfaults of equal area (dimensions 2.75 km by 2.5 km).
Following the work of Liu and Archuleta (2003), we assign the unknown source parameters to
the nodes (or corners) of the subfaults. The source parameters within each subfault are calculated
by bilinear interpolating the four nodal quantities of the subfault. In this study, each node has
five source parameters: slip amplitude D, rake angle l, rupture velocity c, as well as the rise and
fall times (

† 

t1 and 

† 

t 2) of slip rate function. The times 

† 

t1 and 

† 

t 2 control the temporal shape of the
slip rate function, which is assumed to have the form
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The summation of 

† 

t1 and 

† 

t 2 is defined as the rise time of the slip function S(t). The inversion
procedure developed by Liu and Archuleta (2003) is employed to determine these source
parameters.

We first determine the best finite-fault source model for the Loma Prieta earthquake from
the inversion of the original data set (16 three-component records, which give a total of 48
ground-motion velocity time histories). Then we apply a balanced re-sampling technique
(Chernick, 1999) to generate the 100 bootstrap data sets from the 48 original seismogram



records. For each of these bootstrap data sets we find a source model. By analyzing all 101
source models in terms of Equation 1, we obtain the estimation of the variation in the best source
model. For the best source model, we plot the spatial distributions of slip amplitude, rake,
rupture velocity and risetime in Figures 1. The estimated standard deviations of these parameters
are shown in Figure 2. (Although large slip is always accompanied with large variation), there
are still quite large standard deviations in some regions with small slip amplitude. In fact, the
largest standard deviations do not appear in the area with the largest slip amplitudes. A similar
relationship can also be found between risetimes and their standard deviations. The variations of
both rake angle and rupture velocity are strongly correlated with slip amplitude, the larger the
slip amplitude, the less the standard deviation of rake angle or rupture velocity. Moreover rupture
velocities have small variation around the hypocenter, albeit where the slip amplitudes are very
small. This feature indicates that the start times of seismic waveforms place strict constrains on
the initial rupture speed (Hartzell and Langer, 1993).

In addition to displaying the distributions of standard deviations, we also calculate their
average values. According to above the discussion, we believe that the coefficient of standard
deviation (the ratio of standard deviation and the best value of a parameter) is more suitable for
evaluating the variations of slip amplitude and risetime. In general the source parameters are well
determined in the region with large slip amplitude. Therefore the standard deviation or the
coefficient of standard deviation is weighted with the associated slip amplitude when we average
them over the fault plane. The average standard deviation of slip amplitude, rake angle, rupture
velocity, and risetime are 0.72 m, 14°, 0.26 km/s, and 0.62 sec, respectively. The coefficients of
standard deviation of these parameters are 30%, 10%, 10%, and 47%, respectively. It is clear that
the best resolved source parameter is rupture velocity, with only ten percent relative variation.
We can infer that seismic waveforms well constrain the determination of rupture velocity.
Resolution of the slip amplitude is worse than that of rupture velocity, but better than that of
risetime. We believe that the large or small value of rake angle will barely affect its standard
deviation. An average standard deviation of 14° reflects the variation of rake angle, which should
be similar to the variation of slip amplitude. We are not surprised that risetime has the worst
resolution because the frequency band of data is limited to 1 Hz.
Discussion and Conclusion

In the inversion process, the source parameters are determined by minimizing the
objective function. The value of the objective function is an integrated factor that measures the
average misfit between synthetics and data. Because it is impossible to achieve a perfect fit
between the synthetics and data, with a sufficiently large data set in practice, one inversion may
result in synthetics fitting the data better at some stations than at others, while another inversion
may fit the data equally well but at different stations. In this case, source models derived from
the inversion of data are likely different, although they have similar values of the objective
function. Bootstrapping the data set provides a way to estimate the possible variation in finite
fault parameters induced by an incomplete data set.

In our inversion of the Loma Prieta earthquake, the rupture velocity is resolved well. The
resolutions of slip amplitude and rake angle are not as good as rupture velocity, but they might
be improved by increasing the volume of the data set, for example, by adding teleseismic data
and/or geodetic data. Although the resolution of risetime is the worst, reducing the variation of
risetime will be difficult to achieve because the frequency band used in the inversion is limited
by our poor knowledge of the Earth structure.
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Figure 1. Plots of slip amplitude in meters, rake, rupture velocity in km/s, and rise time in sec.



0

0.2

0.4

0.6

0.8

1

0 10 20 30 40

0

5

10

15

20

Sd of Slip Amplitude (m)

*

0

5

10

15

20

0 10 20 30 40

0

5

10

15

20

Sd of Rake Angle (  )

*

0

0.1

0.2

0.3

0.4

0.5

0.6

0 10 20 30 40

0

5

10

15

20

Sd of Rupture Time (km/s)

*

0

0.5

1

1.5

0 10 20 30 40

0

5

10

15

20

Sd of Rise Time (s)

*

o

D
is

ta
nc

e 
 D

ow
n 

D
ip

 (k
m

)
D

is
ta

nc
e 

D
ow

n 
D

ip
 (k

m
)

D
is

ta
nc

e 
D

ow
n 

D
ip

 (k
m

)
D

is
ta

nc
e 

D
ow

n 
D

ip
 (k

m
)

Distance Along Strike (km)

Figure 2. The spatial distributions of standard deviations (Sd) determined for the best 
solution (Figure 1.) of slip amplitude, rake angle, rupture velocity, and rise time.
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