What is a Fault Zone? A PERSPECTIVE FROM BENEATH THE BRITTLE-DUCTILE TRANSITION

DR. ELENA A. MIRANDA

CALIFORNIA STATE UNIVERSITY

NORTHRIDGE

A traditional model of a fault zone Geologic features

- Localized, discrete surface in upper crust
- Widening into a mylonitic shear zone with increasing depth

Fagereng and Toy, 2011; modified after Sibson (1977, 1983); Scholtz (1988, 2002).

A traditional model of a fault zone Geologic features Seismic behaviour

- Localized, discrete surface in upper crust
- Widening into a mylonitic shear zone with increasing depth

Why is this important?

- BDT near peak in crustal strength
- Seismic/aseismic transition zone

The BDT is a load-bearing layer in the crust

- Ductile shear zones sustain stresses higher than brittle faults
- Weak faults in the seismogenic zone can be loaded from below from high stress shear zones

The BDT is a load-bearing layer in the crust

- Ductile shear zones sustain stresses higher than brittle faults
- Weak faults in the seismogenic zone can be loaded from below from high stress shear zones

Important take-home:

 High stress ductile shear zones promote seismic cycle feedbacks

Seismic cycle feedbacks in mid-crustal shear zones

Pofadder Shear Zone, Namibia & South Africa

Melosh et al., 2018

The rock record shows relationship between mylonites and pseudotachylytes

South Mountains, Arizona, USA

Stewart and Miranda, 2017

Fault behavior in the rock record Slip Rate (m/s) 104 10-12 10-18 10-18 10-18 10-19 10-1

- Pseudotachylytes are not the only evidence of earthquakes in the rock record
- Evidence for fast slip rates
- Evidence for fast rupture propagation
- Field + lab techniques

Unique structures for transient and steady-state deformation?

- Host rocks adjacent to pseudotachylyte have shear zones
- Crystal-plastic deformation during rupture propagation

Unique structures for transient and steady-state

See Zamora-

Tamayo #154

deformation?

- Quartz Dauphiné mechanical twinning
- Short-wavelength undulatory extinction (SWUE)
- Planar Deformation Features (PDFs), deformation lamellae

Dauphine twins In Santa Rosa

Trepmann and Stockhert, 2013

Wenk et al., 2011

Conclusions

- BDT is a major loadbearing layer in the crust
- Under-recognized evidence of seismic activity in the rock record
- Micro- and nano-scale investigation
- How to quantify rheology when both brittle and crystalplastic fabrics coevolve?

