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The SCEC Community Rheology Model (CRM) is a three-dimensional description of the rheology of southern California’s lithosphere, based on an ongoing synthesis of data from a wide
range of sources. These sources include but are not limited to seismic imaging studies, rock deformation experiments and theory, regional-scale geological mapping, detailed descriptions
of rocks (petrology and fabric), and thermal modeling constrained by surface heat flow data and depth to the seismic LAB. During the SCECS5 period we have been assembling a preliminary
version of the CRM that makes use of a simplified representation of the regional geologic and thermal structure. This preliminary CRM comprises a thermal model (CTM), a geologic frame-
work model (GFM), and viscous rheologies for each of the GFM rock types. The preliminary CTM and GFM are depth profiles of temperature and lithology, respectively, assigned to geo-

graphic subregions. Viscous flow laws for each GFM rock type have been developed, based on mixing relationships and rheological information for the component minerals. We are in the
process of integrating these components for distribution via the SCEC UVCM framework and other formats.

4 )

Community Thermal Model (CTM)

Geologic Framework Model (GFM) and query tool
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Refined Community Thermal Model (CTM) geotherms are very
different and much improved from generic starting model

Preliminary Geologic Framework Model (2018)

Geologic Framework Province Boundaries and Names Lithology versus Depth: Preliminary GFM
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» Narrower temperature range than generic geotherms
- Almost all SoCal has warm crust and upper mantle lid
- LAB temperature is warmer too: 1200° - 1400° C

Basic Rocks
. Basalt / Meta-Basalt
Examples of GF lithology descriptions for rocks in each province

. Gabbro / Meta-Basic
Proportions of minerals are required to calculate whole-rock flow laws

CRM Crustal Columns
Important implications for CRM: Less lateral rheological variation Slab Format — M,l%
inera

Domain Start End Rock Type Quartz Feldspar Mica Pyroxene Amphibole  Olivine TOTAL
r \ Sierra Nevada East 0 30 Granodiorite 25 60 10 0 o] 0 100
. Sierra Nevada East 30 35 |Quartz Diorite 15 60 10 0 15 0 100
ROC k R h eO I Og | eS Sierra Nevada West 0 30 Granodiorite 20 60 10 0 10 0 100
Sierra Nevada West 30 40 |Quartz Diorite 15 60 10 0 15 0 100
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» Mineral flow laws are specified for feldspar, quartz, pyroxene, olivine, biotite and

amphibole (table below) Gridded version of the GFM compatible with the SCEC UCVM
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» GF “rocks” are defined by % of these minerals, per GFM lithology descriptions The “LEGO” (gridded) GF model

» Aggregate viscous rheology is calculated from mixing relations, assuming
dislocation creep (box below)
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» Viscosity and rock type estimates based on the SCEC CVM and thermal .
models are also being incorporated into the gridded GFM (Shinevar et al., 2018) |

Great Basin /
Walker Lane
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Log, uniform strain rate culated with four different MiXing assumptlons Each dot is an element center. A point-in-polygon test is used to assign a GF prov- Andreas Plesch
1024 = . E ince to each element. Once the province is identified, a1D lithology profile can be Joh esars] esc

Linear, Iunlfmm stress assigned to model elements based on depths to their centers. ohn shaw

Log, uniform stress - Quartz 25%
10%° strainrate =104 s 1 - Feldspar 60% . . . - . . .

: - Amphibole 5% It is possible to use the GF model as is to populate a finite element model Grid cell dimensions are 10 km x 10km x 1km. Depth of
- Mica 10% (for example) but the UCVM or similar will be needed as the GF moves volume is 60km, will extend to 80+ km. Geo-referenced sur-

beyond 1D lithology profiles within terranes with vertical boundaries).
Hence, the gridded “LEGO” version (right) and the query tool (below).

faces will include topography/bathymetry, sediment-
basement boundary, bottom of seismogenic crust, Moho,
and lithosphere/asthenosphere boundary. Lithology contact
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Effective viscosity for granodiorite exceeds
1 10720 Pa s at temperatures typical for the

1020 lower crust (450-780°C at 25-30 km depth, surfaces are defined within provinces.
: c ion- 0.5 0.6.0.1. 0. 0.05. 0 { per CTM). Mixing law choice matters, though
~Lompositon. V.o, V.6, U.1, U9, . | less at high temperatures. - . .

e TSI 28 B D 2 S gh temp A GFM view and query tool is in development

Temperature (°C)

Screen capture 1: querying the GFM Screen capture 2: displaying the GFM (gridded version)

For non-shear zone rocks, we recommend the Huet et al. (2014) mixing law and assume uniform strain rate (result is similar
to average of red and blue lines on figure above). For shear zone rocks, the linear, uniform stress relationship (orange line

SC/EC Geological Framework Model Viewer S'(JE '[ Geological Framework Model Viewer

Disclaimer Contact

1 1 1 : . 1 : : . . . . The SCEC Geological Framewor el (GFM) Viewer provides a browser access to GFM version ataset. It can display a 3D visualization of the Geological Framework model. It also
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