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Punta Banda

120 ka MIS 5e 43m

80 ka MIS 5a 16 m

320 ka MIS 9 100 m

Rockwell et al., 1989 
Dated marine terraces of Punta Banda 
0.4 mm/yr average surface uplift rate.
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Initiation age of transpeninsular faults

Figure from T. K. Rockwell
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Continental rupture in northern GEP occurred ca. 1-3 Ma
Martin et al., 2013 Tectonics
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The role of a keystone fault in triggering the
complex El Mayor–Cucapah earthquake rupture
JohnM. Fletcher1*, Michael E. Oskin2* and Orlando J. Teran1†

The 2010 Mw 7.2 El Mayor–Cucapah earthquake in Baja
California, Mexico activated slip on multiple faults of diverse
orientations1,2, which is commonly the case for large earth-
quakes3–6. The critical stress level for fault failure depends
on fault orientation and is lowest for optimally oriented
faults positioned approximately 30� to the greatest principal
compressive stress7. Yet,misoriented faultswhose positioning
is not conducive to rupture are also common8,9. Here we
use stress inversions of surface displacement and seismic
data to show that the El Mayor–Cucapah earthquake initiated
on a fault that, owing to its orientation, was among those
that required the greatest stress for failure. Although other
optimally oriented faults must have reached critical stress
earlier in the interseismic period, Coulomb stress modelling
shows that slip on these faultswas initiallymutedbecause they
were pinned, held in place by misoriented faults that helped
regulate their slip. In this way, faults of diverse orientations
could be maintained at critical stress without destabilizing the
network. We propose that regional stress build-up continues
until a misoriented keystone fault reaches its threshold and
its failure then spreads spontaneously across the network in
a large earthquake. Our keystone fault hypothesis explains
seismogenic failure of severely misoriented faults such as
the San Andreas fault and the entire class of low-angle
normal faults.

The El Mayor–Cucapah (EMC) earthquake produced the most
complex rupture ever recorded on the Pacific–North American
plate margin1 (Fig. 1a). Waveform modelling indicates that failure
initiated as a subevent of magnitude 6.3 on a north-striking normal
fault with a dip of 45� (refs 10,11), and spontaneously cascaded
through a geometrically complex system of high- and low-angle
faults, producing surface displacements of up to 4m (ref. 1). The
length of individual faults is limited by intersections with other
faults, and surface rupture segments localized to a single fault do
not exceed ⇠15 km (ref. 1).

We examine the EMC rupture from two temporally and spatially
distinct data sets: coseismic surface displacements generated during
the primary rupture1 and focal mechanisms of aftershocks recorded
during the following two months10,12 (Fig. 1a). Coseismic surface
displacements are best expressed and recorded in the rugged
uplands of the Sierra Cucapah, where elevations exceed 1 km (ref. 1;
Fig. 1), and are suppressed in the adjacent low-lying basins owing
to incomplete propagation through the thick sedimentary fill13.
In contrast, the aftershocks form two elongated clusters that are
concentrated mainly in the lowlands and separated by a prominent
seismicity gap centred on the Sierra Cucapah. Both data sets show

a continuous range of slip sense, from pure strike slip to pure dip
slip, on fault planes spanning a full 360� in strike and 20�–90� in dip.
The aftershock series demonstrates additional kinematic variability
and a significant number of aftershocks exhibit a thrust sense of dip
slip12. This extreme kinematic diversity is not random, rather slip
direction changes with fault orientation in a manner predicted by a
uniform stress state (Fig. 2).

The geologic and structural context of the EMC earthquake and
its aftershocks provides an unusually well constrained basis for
modelling the stress conditions that produced the event. Using least
squares14,15 and grid-search algorithms16,17, we separately invert the
surface rupture and aftershock data to obtain the orientation of
three orthogonal principal stress axes and their relative magnitudes,
expressed as the ratio � = (�2 � �3)/(�1 � �3), with �1 being
the greatest compressive stress. The inversions produce consistent
results for both data sets, with �1 and �2 oriented within a
subvertical, NNW-striking plane, and high � values indicating that
�1 and �2 are close in magnitude (Table 1 and Supplementary
Figs 1–3). Despite their similarity, the 95% confidence regions
for �1 and �2 are clearly distinct in both data sets (Fig. 2
and Supplementary Figs 4 and 5 ). Regardless of methodology, the
modelled stress states exhibit Andersonian configurations18, with
subvertical �1 for the surface rupture and subvertical �2 for
the aftershocks (Table 1 and Fig. 2). The stress states are thus
permutations of one another, with �1 and �2 alternating position.
Among the possible explanations for this stress permutation, we
rule out coseismic stress drop, which reduced the NNW–SSE
tectonic stress, opposite of the increase required to explain thrust
mechanisms observed within the aftershocks. Instead, because the
aftershocks are predominantly located beneath sediment-covered
lowlands, whereas most of the surface rupture was measured within
a mountainous highland (Fig. 1a), we interpret the observed stress
permutation as reflecting a spatial variation caused by this contrast
in lithostatic load along the length of the rupture (Fig. 3a).

To assess these stress conditions at the onset of rupture, we infer
that di�erential stress must have been su�cient to produce static
failure of the normal fault, on which the EMC event initiated, here
named the progenitor fault. We also assume that the stress state
did not exceed the cohesive strength of intact rock to produce new
fractures because coseismic rupture was ubiquitously associated
with pre-existing faults. Within this framework, we solve for a
range of coexisting, permuted absolute stress states consistent
with our inversion of fault-slip data, accounting for di�erences
in lithostatic loads between the Sierra Cucapah and surrounding
rift basins, and assuming uniform horizontal stress produced by
the combination of tectonic and lithostatic loading (Fig. 3b; see
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Coseismic Slip Kinematics
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What geologic processes prepare faults of diverse orientations and slip 
tendencies to fail simultaneously in a single earthquake?



Multifault Rupture

• Segments of individual faults define a wide range of slip tendencies. 
• Understanding complex, multifault ruptures requires mechanisms for both 

maintaining fault stability at high slip tendency and for destabilizing faults 
with low slip tendency. 
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Search for unmapped faults!




