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Valle Santo Tomas

2.3 km basin width



Punta Banda

Rockwell et al., 1989
Dated marine terraces of Punta Banda
0.4 mm/yr average surface uplift rate.
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Initiation age of transpeninsular faults

Figure from T. K. Rockwell
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Continental rupture in northern GEP occurred ca. 1-3 Ma
Martin et al., 2013 Tectonics

The Baja California microplate was
300 km longer ca. 2-3 Mal!!!

Did the rheology of the northern
BCM change? How? Why?

Did the applied forces change along
the plate margin? How? Why?
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Simple Optimally Oriented Complex Network

Nieto and Alaniz, 1997
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Mechanics of Multitault Earthquake Ruptures

John Fletcher, Mike Oskin, Orlando Teran (2016)

nature
geosmence
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The role of a keystone fault in triggering the
complex El Mayor-Cucapah earthquake rupture

John M. Fletcher'™, Michael E. Oskin?* and Orlando J. Teran'

The 2010 Mw 7.2 El Mayor-Cucapah earthquake in Baja
California, Mexico activated slip on multiple faults of diverse
orientations'?, which is commonly the case for large earth-
quakes®®. The critical stress level for fault failure depends
on fault orientation and is lowest for optimally oriented
faults positioned approximately 30° to the greatest principal
compressive stress’. Yet, misoriented faults whose positioning
is not conducive to rupture are also common®°. Here we
use stress inversions of surface displacement and seismic
data to show that the El Mayor-Cucapah earthquake initiated
on a fault that, owing to its orientation, was among those
that required the greatest stress for failure. Although other
optimally oriented faults must have reached critical stress
earlier in the interseismic period, Coulomb stress modelling
shows that slip on these faults was initially muted because they
were pinned, held in place by misoriented faults that helped
regulate their slip. In this way, faults of diverse orientations
could be maintained at critical stress without destabilizing the
network. We propose that regional stress build-up continues
until a misoriented keystone fault reaches its threshold and
its failure then spreads spontaneously across the network in
a large earthquake. Our keystone fault hypothesis explains
seismogenic failure of severely misoriented faults such as
the San Andreas fault and the entire class of low-angle
normal faults.

a continuous range of slip sense, from pure strike slip to pure dip
slip, on fault planes spanning a full 360° in strike and 20°-90° in dip.
The aftershock series demonstrates additional kinematic variability
and a significant number of aftershocks exhibit a thrust sense of dip
slip'?. This extreme kinematic diversity is not random, rather slip
direction changes with fault orientation in a manner predicted by a
uniform stress state (Fig. 2).

The geologic and structural context of the EMC earthquake and
its aftershocks provides an unusually well constrained basis for
modelling the stress conditions that produced the event. Using least
squares''® and grid-search algorithms'®", we separately invert the
surface rupture and aftershock data to obtain the orientation of
three orthogonal principal stress axes and their relative magnitudes,
expressed as the ratio ¢ = (0, — 03)/(0, — 03), with o, being
the greatest compressive stress. The inversions produce consistent
results for both data sets, with o, and o, oriented within a
subvertical, NNW-striking plane, and high ¢ values indicating that
0, and o, are close in magnitude (Table 1 and Supplementary
Figs 1-3). Despite their similarity, the 95% confidence regions
for 0, and o, are clearly distinct in both data sets (Fig. 2
and Supplementary Figs 4 and 5 ). Regardless of methodology, the
modelled stress states exhibit Andersonian configurations'®, with
subvertical o, for the surface rupture and subvertical o, for
the aftershocks (Table 1 and Fig. 2). The stress states are thus
permutations of one another, with o, and o, alternating position.
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Coseismic Slip Kinematics



strike slip



dip slip

dip slip



oblique slip



oblique slip

oblique slip



Stress Inversion

SURFACE AFTERSHOCKS
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Multifault Rupture

What geologic processes prepare faults of diverse orientations and slip
tendencies to fail simultaneously in a single earthquake?
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Multifault Rupture

(@))
o

(0}
o

1N
o

w
o

N
o

©
o
=
N
0
%
()
=
(0p)]
e
®
()
c
w

-
o

30 40 50 600, 80 Oy 100 O g120
Normal Stress (MPa)

Coseimsic Surface Rupture: Sierra domain Slip Tend.—>»
®LSF OPF ©BF @PSD @Other Sierra |

O Aftershocks: Delta-Yuha domains Delta-Yuha

« Segments of individual faults define a wide range of slip tendencies.

» Understanding complex, multifault ruptures requires mechanisms for both
maintaining fault stability at high slip tendency and for destabilizing faults
with low slip tendency.



Keystone Fault Hypothesis

Schematic cross section Interseismic stress build up
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* Interlocking geometry of the fault network maintains stability during

Interseismic loading.
» Regulated slip events occur on optimally oriented faults to relieve

excess shear stress.
» Spontaneous failure of the network occurs when a misoriented

keystone fault reaches its strength threshold.
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Landers Earthquake 1992 M 7.3

Sieh et al., 1993, Science















