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Modified sample configuration to induce radial/circumferental isotrpic tension
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The presence of pulverized (highly fragmented, but weakly strained) zones extending The Split Hopkinson Pressure Bar (SHPB) is a reli-

100-200 m from major strike slip faults, including the San Andreas Fault, have been at- able high strain rate loading technique used to — Incident signal Distance
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. . . . L. . . Striker Bar Incident Bar I Transmission Bar
rupture tips. However, theoretical and experimental evidence suggests that such zones  sponse of rock. A uniaxial compressive wave is Specimen
may be formed on the transient tensile side of passing ruptures. These pulverized generated by striker bar impact with the incident Sample
damage zones represent long-lived inelastic off-fault deformation that affect faultdy-  bar and is recorded by strain gauges on the inci- e EZTzclted b _
namics throughout the seismic cycle. We explore the tensile origin of pulverized fault dent and transmission bars. This results in a simple 27 | e elastic — VOzz O = F (e data e elastlc)
rocks associated with major strike slip faults through a modified Split-Hopkinson Pres- load history described by single compressive sinu- 15l L\Z‘J‘r’nmtf:p/y l 66 E 66 66 66
sure Bar (SHPB) experiment that induces 2D isotropic tension. In the experiments, a soidal loading and unloading cycle
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sandwich sample configuration is used in which a rock disk is bonded between two cyl- ;4 yoltage time series from strain gauges, we We .modlﬁ.ed the tra.dltlonal uniaxial compression SHPB experiment to induce radlaI/C|rcumf§r—
inders Composed of more Comp“ant material such as lead or polycarbonate. Axial can recontruct macroscopic axial strain stra;n Z 0.5 ent|a| tensionin a d|Sk‘ShaPEd rOCk SpeC|men. By SandW|Ch|ng rOCk d|Sk between two Comph‘
shortening during experiments results in radial and circumferential tension in the rock rate, and stress histories and quantify tP;e energy g° Indide ant, low compressibility materials (lead cylinders), axial compression causes lead to flow and
disk due to radial expansion of the compliant end materials. Experiments on both dissipated during sample failure (Wd). =05 Pute 71 expand radially outward, pulling the rock specimen apart. This is intended to mimic quasi-iso-
porous granglar (sandstone) and crystalline (granite? rocks eqable us to gvaluatg varia- 17 5 | tropic tensile pulses carried by the propagating rupture tip. Tensile failure results in polygonal
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collected on  strain gauges using high speed photography and digital image cor 20 ture patterns produced in traditional unaixial compression experiments. During the experi-
relation. Our modified SHPB experiments on Westerly Granite show that at strain rates : : : : : :
] 1 . . . 2.5 x x x x J ments, we can monitor circuferential stress using strain gauge mounted directly on the rock. In
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similar conditions, deformation of Berea Sandstone is accommodated by distributed all experiments, lead disks are 10-15 mm thick and rock disks are 5-10mm thick.
grain boundary failure and pore space expansion, therefore preventing fragmentation . . . .
by fracture growth. These results explain asymmetric off-fault damage observed in the Stress, Strain, Strain-Rate Timeseries
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Compressive rock strength increases dramatically with strain rate, Post-Mortem Rock Structures Berea SS - undeformed Berea SS - compression Beren <5 - tension
B and rocks pulverized under compressive loads in the lab require
strain rates of ~10? s
These conditions are only expected within cm’s of faults yet field evidence
m suggests that rock fragmentation occurs tens of meters from faults:
m Strong crystalline rocks seem to be preferentially pulverized compared to
weaker sedimentary rocks C
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o experiments (uniaxial ] ol N Ve=03CR| | Under compression, Berea Sandstone exhibits similar mechanical behavior to granite in terms of strain-rate sensitivity to strength,
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Tensile and Compressive fragmentation produces distinctly different microstructures in both
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near-isotropic tensile stresses associated with passing earthquake ruptures, following Statc Stremtn, Shinidt & Lotz (1979 . L strand of the San Jacinto Eault in Rock
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B What is the relationship between strain rate and rock strength under tensile 2 1 Tensile frag mentation can explain heavily fragmented rocks at
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B How do crystalline granitoid rocks differ in their mechanical response to impulsive 2 | Range from static (Schmidt & Lutz, Granular sedimentary rocks appear to simply dissagregate during
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