

JAMSTEC 独立行政法人 海洋研究開発機構

AOB

Quantitative relationship between slow earthquake migration speed and frictional properties

E-mail: ariyoshi@jamstec.go.jp

*Keisuke ARIYOSHI*1, Roland BURGMANN*2, Jean-Paul AMPUERO*3, Toru MATSUZAWA*4, Akira HASEGAWA*4, Ryota HINO*4, Takane HORI*1

*1: Japan Agency for Marine-Earth Science and Technology (JAMSTEC)

*2: Department of Earth and Planetary Science, Berkeley Seismological Laboratory University of California, Berkeley

*3: Seismological Laboratory, California Institute of Technology (CalTech)

*4: Research Center for Prediction of Earthquakes and Volcanic Eruptions (RCPEV), Tohoku University

doi:10.1016/j.tecto.2019.06.021

1-1. Introduction: it's tough work to reproduce earthquake cycles...

Actual earthquake cycle is complicated.

 We have to introduce frictional properties in complex form...

> ⇒ There exists many possible patterns of frictional input parameter combination...

1-1. Introduction: it's tough work to reproduce earthquake cycles...

Nakata et al. [2016 Sci. Rep.]: 121 models

The number of trial models is so many.

One of the key factor for reproducing time delay between

earthquakes is propagation speed of postseismic slip.

⇒ It is important to know the relationship between frictional properties and the propagation speed.

1-2. Introduction: previous studies on postseismic slip propagation speed

these results & evaluate their validities.

Objective

• We proposal a new relationship between aseismic slip propagation, frictional properties and fault geometry, instead of sliding velocity information.

Strategy

- Analyzing a test simulation of earthquake cycle on the basis of a RSF law, we describe stress change due to the passage of postseismic slip.
- Introducing the stress change description to the RSF law, we get a theoretical relationship and compare it with numerical simulation results.

2-1. Numerical simulation:

- Main shock: Mw 7.3 & Tr 50 years, 40 × 40 (km²)
- afterslip propagates in the weak stable region.
- Calculation results are independent of mesh size.

2-2. Numerical simulation: Results of afterslip propagation

- $V_{rup} \propto (V_{max}/\Delta \tau)$ can explain most of propagation
- Difficult to estimate V_{max} in advance

3-1. Analytical solution for aging-law of RSF:

 Afterslip propagation is treated as "domino reaction" connected to nearby blocks ⇒ We should calculate

 ΔT for Release Zone (Δs).

[Surge Period] ≒ [Release Period] • $\Delta T \Rightarrow$ time difference on peak time of maximum slip velocity (or shear stress)

between nearby two blocks

3-1. Analytical solution: *Physical modeling* of postseismic slip propagation

- Pre-stage (increasing shear stress): $d\theta/dt \approx -V\theta/dc$
- Loading process is described as step/ramp/linear function.
- Input parameter: ramp (T, Δτ/T), linear(Δτ/T), step(Δτ)

3-2. Analytical solution: Comparison of V_{prop} with numerical simulation result

- (Left): Three solutions can explain V_{prop} within one order (0.1~10)
- (Right): Approximated solution can also explain it in the same order.
- Underestimate for shallow focal depth due to free surface condition where V_{max} becomes higher than expected from frictional properties

4. Relationship between V_{prop} & σ

⇒ V_{prop} becomes largely convergent

 \Rightarrow consistent with far field V_{prop} in the test simulation

result in that V_{prop} is not proportional to slip velocity.

Since Δ s becomes larger in case of small σ (shallower part), Δs is also dependent on σ as shown by other models and different depth.

 $\Delta s_{appro}^{DEFJ} = (a^{DEFJ}/a^A)(b^A/b^{DEFJ})(d_c^{DEFJ}/d_c^A)\Delta s_{sim}^A$

5-2. Spatio-temporal change of Δs

- postseismic propagation behaves as a thermal diffusion process under the steady state [Viesca & Dublanchet, under revision for JGR].
- Δs becomes broader as the time passage T from the origin time of mainshock.
- This approximation is applicable to constant frictional properties: sections (iii) and (iv) in our model.

6. Application to actual fields

- Time delay reflects the magnitude of σ: (3) < (6) < (7)
- Why did (4) Deep Aftershock occur earlier than (6) & (7)?
- \Rightarrow Because of <u>high $\Delta \tau$ </u> due to the stress concentration between (1) & (2)
- Why was (5) Afterslip rapid shallow upward ? \Rightarrow small σ • Slip & Aftershock Shadow suggests the condition of $b/d_c < G/\sigma\Delta s$ 14

6. Summaries & Conclusions (1)

- We are succeeded in explaining V_{prop} quantitatively by using approximated solution as a form of $\frac{b\Delta s}{ad} \exp\left(\frac{\Delta \tau}{a\sigma}\right) V_b$
- This approximation helps us to understand the relationship between frictional properties and V_{prop} more easily.
- Two contradict relationships of V_{prop} with $\underline{a}\underline{\sigma}$ or $\underline{(a-b)}\underline{\sigma}$ are explained as follows (if $V_{pl} \ll V_b$):

$$V_{prop}^{ramp} pprox V_{prop}^{step} pprox \left(rac{b}{a}
ight) rac{\eta \Delta s}{d_c} \exp\left(rac{\Delta au}{a\sigma}
ight) V_b = \left(1 + rac{b-a}{a}
ight) rac{\eta \Delta s}{d_c} \exp\left(rac{\Delta au}{a\sigma}
ight) V_b$$

- For significant $\Delta \tau / a\sigma$: V_{prop} is practically dependent on $\underline{a\sigma}$
- For negligible $\Delta \tau / a\sigma : V_{prop}$ is dependent on $(a-b)\sigma$

6. Summaries & Conclusions (2)

- The size of Release zone (Δs) is larger than $L_b = \eta G d_c / b \sigma$, proportional to (a/b)dc.
- Δs is also dependent on the passage time (T) from the origin time of mainshock.
- By converting $\Delta s' = \Delta s/T$ on the basis of thermal diffusion theory, we can roughly evaluate the temporal change of Δs approximately under the condition of steady state and constant frictional properties.
- If frictional properties are not constant, such as effective normal stress proportional to depth, it is not valid to apply

above relationships, which is our future study.