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Objective

* We proposal a new relationship between aseismic slip
propagation, frictional properties and fault geometry,
instead of sliding velocity information.

Strategy

* Analyzing a test simulation of earthquake cycle on the basis
of a RSF law, we describe stress change due to the passage

of postseismic slip.

* Introducing the stress change description to the RSF law,
we get a theoretical relationship and compare it with
numerical simulation results.

3-1. Analytical solution: Physical modeling
of postseismic slip propagation
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* Pre-stage (increasing shear stress): de/dt ~ ‘Vg/d,:
* Loading process is described as step/ramp/linear function.
* |Input parameter: ramp (T, At/T), linear(At/T), step(At)

5-2. Spatio-temporal change of As .=~
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Background: Release Zone As
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postseismic propagation behaves as a thermal diffusion process under the steady
state [Viesca & Dublanchet, under revision for JGR].

As becomes broader as the time passage T from the origin time of mainshock.

This approximation is applicable to constant frictional properties: sections (iii)land
(iv) in our model. '

* Actual earthquake cycle is complicated.

* We have to introduce frictional properties in ©
complex form...
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1-1. Introduction: it’s tough work to
reproduce earthquake cycles...
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= There exists many possible patterns of
frictional input parameter combination...
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2-1. Numerical simulation:

.. Modeling of afterslip

de. ldt=1-V_0. /d,
K ; greenfunction (Okadal992)

* Main shock: Mw 7.3 & Tr 50 years, 40 X 40 (km?)
e afterslip propagatesin the weak stable re
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* Calculation results are independent of mesh size.

3-2. Analytical solution: Comparison of
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G : rigidity. c¢: shear wave velocity

solving by using Runge-Kutta Method.

V. with numerical simulation result
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(Left): Three solutions can explain V,,, within one order (0.1~10)
(Right): Approximated solution can also explain it in the same order.

Underestimate for shallow focal depth due to free surface condition
where V_ . becomes higher than expected from frictional properties
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Both of analytical solutions can describe

Vorop @s Well as Vo = (G/yAT) V, ,, — f |

6. Application to actual fields
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1. Earthquake
Nucleation

* Time delay reflects the magnitude of ¢: (3) < (6) < (7)
 Why did (4) Deep Aftershock occur earlier than (6) & (7) ?

cimpte ~ Veonst €XP (—

= Because of high At due to the stress concentration between (1) & (2)

* Why was (5) Afterslip rapid shallow upward ? = small o
* Slip & Aftershock Shadow suggests the condition of b/d. < G/oAs *

1-1. Introduction: it’s tough work to
reproduce earthquake cyc/es...
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Kato [2008 JGR]: about 100 models
* The number of trial models is so many.
* One of the key factor for reproducing time delay between
earthquakes is propagation speed of postseismic slip.

= It is important to know the relationship between
frictional properties and the propagation speed.

2-2. Numerical simulation:
Results of afterslip propagation
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4. Relationship between V. . & o0
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= consistent with far field V in the test simulation
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result in that V,,, is not proportional to slip velocity.

6. Summaries & Conclusions (1)
* We are succeeded in explaining mep quantitatively by using
exp( )Vb

approximated solution as a form of 2

ad,

* This approximation helps us to understand the relationship

between frictional properties and V,,,, more easily.

* Two contradict relationships of V.., with ag or (a-b)c are

explained as follows (if V, << V) :
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* For significant At/ao : V.,

* For negligible At/ao : V., .. is dependent on
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1-2. Introduction: previous studies on
postselsmlc slip propagation speed

—> Ariyoshi et al. [2007 EPSL]:
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= We have to understand physical reasons of :
these results & evaluate their validities. Y
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3-1. Analytical solution for aging-law of RSF:
Physical modeling of postseismic slip propagation
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Afterslip propagation is treated as * [Surge Period] = [Release Period]

“domino reaction” connected to
nearby blocks = We should calculate
AT for Release Zone (As).

* AT = time difference on peak time of
maximum slip velocity (or shear stress)
between nearby two blocks ’

5-1. How to estimate As from fric. properties?
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6. Summaries & Conclusions (2)

* The size of Release zone (As) is larger than L,=nGd_/bo,
proportional to (a/b)dc.

* Asis also dependent on the passage time (T) from the
origin time of mainshock.

* By converting As’=As/T on the basis of thermal diffusion
theory, we can roughly evaluate the temporal change of As
approximately under the condition of steady state and
constant frictional properties.

* If frictional properties are not constant, such as effective
normal stress proportional to depth, it is not valid to apply
above relationships, which is our future study.
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