
 

Map showing selected event with a red circle and corresponding affected fault patches in blue. Previous events are 
displayed with grey circles connected by a grey line that indicates their chronology with respect to the selected event. 
Similarly next events are displayed with purple circles connected by a purple line. Visibility control toggles for various 
layers are on top right.

Snapshot of full graphical user interface. Left image showing selection by event ID. The event can be further filtered via 
magnitude and patch sliders. Trail and time series sliders allow customization of ancillary items for display. Right image 
shows selection by event time. The interface allows users to provide input via a slider (for easy scrubbing), text input box 
(for precise numeric input) as well as increment and decrement buttons at preselected scales for swift exploration. A drop 
down selection list enables choice for additional scales.

This figure shows strong scaling of RSQSim performance of original and optimized code. This is defined as wall clock time 
change as we increase the number of cores while keeping the problem size constant. Both absolute performance and 
scaling improves with the optimization reducing the number of root solves. The optimized code is scalable up to 8k cores. 

0	

200	

400	

600	

800	

1000	

1200	

1024	 2048	 4096	 8192	

Ti
m
e	
(s
ec
.)	

Ncores	

Blue	Waters	

Original		 Op1mized	

Line plot shows magnitude, duration and area of 100 previous and 100 next events that are adjacent the selected one 
shown in the center. Clicking on any event on the time series loads the chosen event in the map above, enabling swift 
exploration.

 

Visualization & analysis

Visualization of RSQSim data
Developed an interactive web based application, that allows event selection and filtering of large 
earthquake catalog data.

Challenges
• What and how to display? 
• Combining different plots and linking them
• Capable user interface to select events from 6 million records both via id and time as well 

filtering them on magnitude and affected patches
• Fast querying and quick round trip communication for generating and presenting visualization

Data wrangling
• Normalize index to 1 based
• Normalize variable names
• Translate 3D data to 2D
• (triangle patches stored with vertex + 3D rotations)
• (rectangle patches stored with center + length, width + 3D rotations)
• Add geographic projections from UTM to EPSG 4236
• Compare using raw data vs database

Application design
Developed a web app using the following
• Python 

        Flask framework : server/client brokering
        Folium : map plotting
• JavaScript 

        Leaflet :  mapping
        C3JS : time series plots
        noUISliderJS : mobile friendly sliders
• HTML

User interface design
• Map : Layers, Markers pop-ups, Link with time series plot. See figure 1
• Time series: Linked with map plot, Enable filter constraints. See figure 2
• Selection : Event or Time. See figure 3
• Filters : Magnitude, Number of patches, Trail events. See figure 3

Database findings
• Fast and easy querying
• Single file, requires less management 
• Does not require loading all data in memory

Conclusions
In summary we streamlined data management, analysis and visualization process

Transformed data to a database
• Normalized data from mixed index in source data
• Validated data transformations
• Easier data management/sharing, only one file
• Scalable, as data does not need to be loaded into memory
• Fast and easy querying

Developed interactive visualization web application
• Enables quake exploration in rich geographic context for a large catalog
• Can support multiple concurrent users

Analysis
Calculated mean recurrence interval with nucleation and with nucleation + participation

Acknowledgments
This work used the Extreme Science and Engineering Discovery Environment 
(XSEDE), which is supported by National Science Foundation grant number 
ACI-1053575. This work also utilized expertise on code optimization, workflows 
and visualization provided via the XSEDE Extended Collaborative Support 
Service (ECSS) program. This work is also supported by National Science 
Foundation grant number EAR-1135455 and Keck Foundation grant number 
005590-00001.

 

Computation
RSQSim Earthquake Simulator
A time-series algorithm
• Each patch/element makes transitions between 3 basic states according to 

equations of fault friction and based on the state of other elements
•  At each time step, go through all elements and calculate the time of next 

transition based on current configuration. 
• Find the minimum transition time and advance all elements. Repeat as desired. 

     S0 → S1 → S2 → S0

Computational Needs
We need to scale to O(10K) cores and more, to accommodate memory 
requirements and achieve faster throughput as
• The code can currently run on O(1K) cores with O(100K) elements. 
• Future needs: O(1M) elements 

• Memory usage scales as Nelem
2

Parallel Performance
• Patches are distributed among compute cores
• Wall clock time to compute transition time is highly uneven among the patches. 
• Some cores take much longer to compute this step than others, resulting in other 

cores idly waiting for them. 
• Therefore finding global minimum transition time is a time-consuming part of 

the algorithm and does not scale well with core count. 

Algorithm Optimization 
• Load	imbalance	arises	from	finding	the	global	minimum	5me	of	transi5on
• Mainly	expensive	solves	of	a	root	finding	(zbrent)	and	an	allreduce	opera5on	in	
MPI.	

• Address	load	imbalance	by	limi5ng	the	number	of	5mes	the	zbrent()	func5on	is	
called.	This	is	controlled	by	a	parameter	ZBrentUpperBracket,	set	to	a	default	
value	that	precludes	solving	for	the	minimum	5me	in	cases	during	dynamic	
rupture.	

• This	saves	computa5on	5me	(up	to	33%)	as	well	as	improves	scalability	by	
substan5ally	reducing	load	imbalance	(since	very	few	tasks	will	have	significant	
numerical	solve	5mes).	See	figure	4	on	the	right.	

 

Abstract
We report on progress of performance tuning and visualization for earthquake simulator 
code RSQSim. We have studied performance of the code in detail on supercomputers 
such as Blue Waters (NCSA/UIUC), Stampede (TACC) and Mira (Argonne). We have 
continued to improve scalability efficiency of the code, mainly by reducing load 
imbalance. This is achieved by introducing a new feature of the code which uses an 
added physical constraint that allows a large reduction in the number of times when an 
iterative solve is called. This saves on calculation time, as well as makes the code more 
load-balanced due to less variable numbers of calculation steps. This feature alone leads 
to up to 33% better performance and substantially improved scalability. Furthermore, we 
have improved the scaling of the initialization portion of the code and created a Github 
repository, for the first time, for the SCEC CISM project.

We also report final results from visualization work. RSQSim generates data catalog of 
millions of seismic events for thousands of years and their associated properties such as 
changes in slip, stress, etc. Exploring this data is of vital importance to validate the 
simulator as well as to identify features of interest such as quake time histories, conduct 
analyses such as calculating mean recurrence interval of events on each fault section. We 
have created a prototype web based tool for exploring this data interactively. In course of 
visualization work we recognized the need to transform the data from current form into a 
more scalable and manageable format. We also summarize data management findings 
and discuss how the changes impact analysis and its future potential. Interactive 
visualization is accessible at http://vis.sdsc.edu:5555

Performance enhancements and visualization for RSQSim earthquake simulator
Dmitry Pekurovsky1,    Amit Chourasia1,     Keith B. Richards-Dinger2,     Bruce E. Shaw3,     James H. Dieterich2,     Yifeng Cui1

1San Diego Supercomputer Center, University of California, San Diego        2University of California, Riverside        3Columbia University

1

2

3

4


