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Learning from the Canterbury Earthquake Sequence

| will draw heavily from what we have learned from Canterbury (and
numerous more recent strong shaking events), but two key points to
set the context:

Moving beyond short-term (1-day 1-week 1-month) forecasting
IS necessary

This has been particularly necessary for technical end-users and
decision makers.

Consistency between the OEF forecasts and long-term hazard is
important
This has been necessary for technical end-users and helpful for
communication across all levels of users.



The time-dependent hazard model for Canterbury
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The time-dependent hazard model

L Short-term clustering

v * STEP & ETAS (aftershocks)
£ Medium-term clustering
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= Helmstetter

All models were implemented in CSEP testing centres
prior to their use in the ensemble
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Expert uncertainty (and not pursing consensus)

None
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Exploring the epistemic uncertainty
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Exploring the epistemic uncertainty

Combined model: Plausible range of
rates based on expert weights with
uncertainty
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Spatial resolution

1) what are the primary sources of uncertainty that contribute to
reduction in forecast skill as spatial resolution increases

2) can we quantify or reduce these uncertainties

3) what is, and how do we determine, the optimal resolution for
applications such as the building design standards

A focus on uncertainty
5 examples of source model uncertainty




Ex. 1 Magnitude isn't magnitude, isn't
magnitude, isn't magnitude, ...

Catalogued Events in Central North Island During 2007
Epicentres by Depth: 1695 Events with Magnitude =3
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20%-30% increase in hazard
For hazard we need to forecast Mw. We don't have Mw to small magnitudes
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Models are developed on best quality catalogs
OEF doesn't necessarily have available best quality catalogs

The impact of this can be significant

See Annemarie Christophersen’'s poster for more details




Ex. 2: Fault model completeness, a thought

experiment

Approx 1300yrs 900 years prior to 1855
prior to that earthquake

Since 1855
earthquake

Wairarapa Fault, New Zealand, M8.1 1855

Max horizontal offset ~18m: vertical ~7m




Ex. 2: Fault model completeness, a thought experiment

Historical Large New Zealand Earthquakes

Onshore shallow (<25 km deep), Mw >6.9 earthquakes since 1840

3 February 1931
Hawke's Bay
{ Magnitude 7.8
1

23 February 1863
Dannevirke
Magnitude 7.5

................

1+ 19 October 1868

i Cape Farewell

E Magnitude 7.2
16 October 1848
Marlborough

Magnitude 7.6

5 March 1934
Horoeka (Pahiatua;
Magnitude 7.6

17 June 1929

Buller . 24 June 1942
Magnitude 7.7 Wairarapa |
Magnitude 7.1
24 May 1968
Inangahua 23 January 1855
Magnitude 7.2 Walralrapa
& Magnitude 8.2
1 September 1888
North Canterbury
Magnitude 7.3
9 March 1929
Arthur’'s Pass
Magnitude 7.1
- /
- ® Mw7-82
4 September 2010 . Mw 6.5-6.9
Darfield
Magnitude 7.1
Surface
rupture

If we had today's geological
methods & tools in 1840,
how many earthquakes since
1840 would have occurred
on faults we would have
included in the source model?

YESI 5 events 42%-50%

NO... o-/

events

50%-58%

Nicol, et al, 2016




Ex. 2: Fault model completeness, a thought experiment
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Ex. 3: Clustering & the Poisson Assumption

Traditional PSHA

-Future clustering is difficult to model.

- In the NSHM, earthquakes are assumed
to be random and independent in time.

- The uncertainty is larger than what is
modelled

Earthquake Clustering

- Occurrence rates are best understood
during an aftershock sequence (due to
knowledge of clustering)

Declustering
- the method of declustering can add
significant variability to the hazard

Earthquake Rate

Aftershock Rates with Uncertainty

Preferred weighting
Mean +/- 2 std dev'ns
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The EEPAS Model

100

* Every earthquake contributes to "1
probabilities for future quakes.
Swarms tend to contribute more

=
3
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* Three scaling relations with
observed regional avg magnitude
with forecast:

* Magnitude (non-GR)

Ap(10%km?)
S

* Time .

* Area
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& Evison
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Medium-term EEPAS Clustering
Two Examples:

New Zealand: Arthur's Pass Region 1970-2015
*1970s 5 M>5

* 1990s 2 M>6.5

*« 2015 M6.0

California: Mojave Desert 1992- 1999
* 1992 Joshua Tree M6.1

* 1992 Landers M7.3 + M6.5 (Big Bear)
* 1999 Hector Mine M7.1




Ex. 4: Low Seismicity Regions & Lack of Data

Current PSHA is built upon
knowledge of faults, and
recent earthquake
occurrence

* Particularly for low seismicity
areas (e.g., Auckland) with few
data: are the last 50-150 years of
earthquakes representative of the
next 507

* With less data, uncertainty is
necessarily higher, but is
unquantified

* Quantifying uncertainty requires a
model or data
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Learning from high seismicity regions

What can we learn by testing models created from subsets of data

selected from high seismicity regions?

* Create multiple smoothed seismicity (SS) models from block bootstrapped

catalogs of 5, 10, 20 ... up to 500 M>4 events

* Test against the M>5 events selected from the next X M>4 events (e.qg., 5,

10 ... 20) against a Spatially Uniform Poisson (SUP)
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Hybrid models

The goal is to use multiple models in combination and to not be
restricted by model type or input data type (clustering, time-
periods, smoothing, fault data, subduction interface,

strain)

Multiplicative combinations of models are more dynamically
adaptive than additive combinations

Optimised scaling functions are applied to each model in the
combination based on fitting to data

A two step procedure:

— Optimisation of the hybrid combination (e.q., the scaling
functions) during a learning period

— Testing the combination during an independent testing
period. The best model during optimisation is not always
the best model during testing



Hybrid models including geodetric strain
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In the time frames optimised and pad
tested, strain rate information gives

the most significant improvement of ¢
all models

Optimisation Period
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A hybrid based on slow slip events and PPE
Network Inversion Filter (NIF) results showing SSE on the Hikurangi
Margin

We only use
data from

40km
upward

30\ oW vy
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173 A7

Bartlow et al,, 2014



|GPE
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Ex. 5: Spatial Resolution

* If we predict the earthquake rate
distribution for the next 50-years for all of
NZ collectively, we do pretty well.

* If we predict it for this 10km? region, we
are less informative.

* What is the best resolution for the most
useful information for regulation and
planning? Risk based optimisation?
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GNS Science



Be a shame if someone were to IBSE Iit.

- Carl Sagan



How much information is in any 5 year test?

CSEP "long-term” model testing is based on 5 year
tests on so called time-independent models.

What does one five year testing period tell us
about any other five year period?

* Use California earthquake catalog data from 1940

* Create hundreds of block bootstrapped catalogs of
length 90 days, 1lyr, 5yrs, 10yrs, 20yrs and 50yrs

* Evaluate the variability of the forecast skill of the
models across the bootstrapped catalogs



How much information is in any 5 year test?

HKJ: 90 day, 2.4% rejections
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The Value of Testing and Gut-Feeling

All parts of the Canterbury model have
been tested against NZ and global data:
- Against past data
- Ongoing against future data

Results indicate that:
The combined model out performs all of
the individual models

The model provides informative
forecasts for its current uses
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The Value of Testing and Gut-Feeling

Test results are not of interest and are not
understood by decision makers and end-users,
including the NZ engineering community

New Zealand has no official body responsible for: = *

1) delivering forecasts
or-
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2) commenting on the validity of publicly available
forecasts (e.g., CEPEC/NEPEC) h

"The sequence is over" - Many People 2012-2016 =~

(14/2/2016 Mw5.7 Christchurch CBD)
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Communicating Forecasts & Hazard



Challenges to communication

* Complexities of meeting the needs/perceptions of
many different groups (e.qg. forecasters, social
scientists etc...)

* Communication guidance that does not address
uncertainty in the models

* Internal actors who may want to "not panic the
public”.

* Putting the needs of the public first



j M7.1 East Cape Earthquake: what we think will happen next
What works — .
Scenario One — Very Likely (up to 95 percent within the next 30 days)

The most likely scenario is that aftershocks will continue to decrease in frequency as expected (and in line with forecasts). Aftershocks of

the M7 .1 earthquake will continue to be felt in the East Cape area. This includes the potential for aftershocks of between ME.0 — 6.9 (50

o P d percent chance within the next 30 days). A similar earthquake occurred on Waitangi Day 1995 (M7 .1) just to the south-east of the M7 .1
roviding maps,

East Cape earthquake; that particular earthquake had felt aftershocks which continued for more than two years.

i m a g e S S t O ry Scenario Two — Unlikely (5 percent or less within the next 30 days)
' 4

An unlikely scenario is another quake hetween M7.0 — M7.9. This earthquake may be onshore or offshore but close enough to cause

( S C e n a rlo) ta b l e S severe shaking on land. Also there is a possibility of an earthquake either north or south of the M7.1 mainshock area e.g., in the Hikurangi
I

Subduction Zone. Such large earthquakes have the potential to generate tsunami.

a n d fi g u re S to Scenario Three - Very Unlikely (within the next 30 days)

A much less likely scenario than the previous two scenarios is that recent earthquake activity will trigger a significantly larger earthquake

C O I I I I ' l u n I C a t e (M8 or greater). This scenario is very complex and when combined with the current uncertainty in our models, we can't confidently put a

probability estimate on it occurring. However, even with such a large "triggered” earthquake on the ‘plate interface’ (where the Pacific Plate

fo re Ca St S meets the Australian Plate) being very unlikely, we cannot discount the possibility. This scenario is similar to what occurred in the Tohoku
Earthguake in Japan in 2011, Although it is still very unlikely, the chances of this occurring have increased slightly since the M7.1
earthguake.

* Simple, straight
p / g Aftershock Forecasts
fo rwa rd P I n C l_ u d e East Cape region long-term aftershock probabilities
multiple agency
Average Range Frobability of Average Range Probability of  Average Range Frobability of

I I Ie S S a g e S number one or more number one or more number one or more

Within 30 days 4 1-8 99% 0.4 0-2 32% 0.04 0-1 4%

Issued at noon, 12 September 2016 for coming month.

Aftershock probabilities read from the table:




Guidance from social science

* People may still be confused, no matter what
you say or how you say it. That is okay.

* Research does not always work in practice
(probability wording table).

* Timing is everything. Get out the information
quickly.

* 8 PhDs reviewing the article does not
guarantee that the story will be without typos.



Communicating OEF Forecasts




Short Summary: Some Overarching
Principles & Goals

* Accounting for uncertainty in the forecasts
*Moving beyond simple aftershocks
 Using tested models

* Consistent information across all needs from
short-term forcasting to long-term hazard

' Providing context for the forecast numbers

* Responsive to the needs of the end users
 Adaptable to changing/improving communication

needs
- GCNsscience



What | would like to see from the
Forecasting/CSEP Community

* Moving beyond ETAS

* Medium/long-term model development

' Testing of long-term models

" Alternative methods & data sets

Improved spatial modelling

- Spatial resolution/optimisation: trading off precision and

uncertainty
* Alternative end-user metrics (e.g. Risk based)

* Consideration of hazard & PSHA needs
Improved communication and interpretation of testing
results within science and end-user communities

* More students in statistical model development and
testing.



