The Bridge from Earthquake Geology
to Earthquake Seismology

David D. Jackson djackson@g.ucla.edu

Thanks to Ned Field, Kevin Milner, Kieth Richards-Dinger, Jacqui Gilchrist, Jim Dieterich, Glenn Biasi, and Morgan Page

Tectonic

Moment rate

Seismic

Computer simulation

Fault slip rate

Earthquake rate

Fault geometry

Magnitude distribution

Strain rate

Paleo-seismology
Common Assumptions

• Sediment offsets in trenches caused by quakes
• Constant rate (earthquakes and strain) in time
• Moment balance (tectonic in = seismic out)
• Magnitudes limited by fault length
• Big quakes occur on big faults
• Important faults are known
• Elasticity
• Quakes caused by stress
• Quakes repeat, but not too soon
• Big and small quakes come from different populations
• Rupture length, width, and slip scale with Moment
Over large enough area, earthquake rate is quite steady.
California earthquakes 1900 = 2011 m7.0+
Implications of paleo-seismic studies in California

- Paleoseismic data provide the primary support for the assertion that large earthquake rates were higher before 1900 than after.
- Paleoseismic data provide the primary support for the assertion of quasi-periodic recurrence, that is fairly regular time intervals between slip events.
<table>
<thead>
<tr>
<th>Site</th>
<th>Events</th>
<th>Open Interval</th>
<th>Poiss Rate</th>
<th>Lognormal Rate</th>
</tr>
</thead>
<tbody>
<tr>
<td>Elsinore—Glen_Ivy</td>
<td>6</td>
<td>102</td>
<td>0.0051</td>
<td>0.0056</td>
</tr>
<tr>
<td>N._SAF—Santa_Cruz_Segment</td>
<td>10</td>
<td>106</td>
<td>0.0094</td>
<td>0.0091</td>
</tr>
<tr>
<td>N._SAF—Alder_Creek</td>
<td>2</td>
<td>106</td>
<td>0.0011</td>
<td>0.0011</td>
</tr>
<tr>
<td>N._SAF—Fort_Ross</td>
<td>4</td>
<td>106</td>
<td>0.0029</td>
<td>0.0033</td>
</tr>
<tr>
<td>N._SAF—North_Coast</td>
<td>12</td>
<td>106</td>
<td>0.0039</td>
<td>0.0038</td>
</tr>
<tr>
<td>N._SAF—Offshore_Noyo</td>
<td>15</td>
<td>106</td>
<td>0.0053</td>
<td>0.0053</td>
</tr>
<tr>
<td>Hayward_Fault—South</td>
<td>12</td>
<td>144</td>
<td>0.0057</td>
<td>0.0060</td>
</tr>
<tr>
<td>S.SAF—Wrightwood___</td>
<td>15</td>
<td>156</td>
<td>0.0094</td>
<td>0.0094</td>
</tr>
<tr>
<td>S._SAF—Carrizo_Bidart</td>
<td>6</td>
<td>156</td>
<td>0.0084</td>
<td>0.0087</td>
</tr>
<tr>
<td>S._SAF—Frazier_Mountain</td>
<td>8</td>
<td>156</td>
<td>0.0071</td>
<td>0.0067</td>
</tr>
<tr>
<td>S._SAF—Pallett_Creek</td>
<td>10</td>
<td>156</td>
<td>0.0066</td>
<td>0.0067</td>
</tr>
<tr>
<td>S._SAF—Burro_Flats</td>
<td>7</td>
<td>200</td>
<td>0.0048</td>
<td>0.0049</td>
</tr>
<tr>
<td>S.SAF—Pitman_Canyon___</td>
<td>7</td>
<td>200</td>
<td>0.0055</td>
<td>0.0058</td>
</tr>
<tr>
<td>S.SAF—Plunge_Creek_</td>
<td>3</td>
<td>200</td>
<td>0.0036</td>
<td>0.0049</td>
</tr>
<tr>
<td>Elsinore—Temecula</td>
<td>3</td>
<td>203</td>
<td>0.0010</td>
<td>0.0010</td>
</tr>
<tr>
<td>San_Jacinto—Hog_Lake</td>
<td>14</td>
<td>243</td>
<td>0.0037</td>
<td>0.0032</td>
</tr>
<tr>
<td>Puente_Hills</td>
<td>3</td>
<td>250</td>
<td>0.0003</td>
<td>0.0003</td>
</tr>
<tr>
<td>Hayward_Fault—North</td>
<td>8</td>
<td>300</td>
<td>0.0030</td>
<td>0.0031</td>
</tr>
<tr>
<td>Rodgers_Creek</td>
<td>3</td>
<td>304</td>
<td>0.0026</td>
<td>0.0031</td>
</tr>
<tr>
<td>S._SAF—Coachella</td>
<td>7</td>
<td>329</td>
<td>0.0055</td>
<td>0.0056</td>
</tr>
<tr>
<td>Garlock—Western_(all_events)</td>
<td>5</td>
<td>330</td>
<td>0.0008</td>
<td>0.0008</td>
</tr>
<tr>
<td>S._SAF_Mission_Creek_1000_Palm</td>
<td>5</td>
<td>332</td>
<td>0.0034</td>
<td>0.0038</td>
</tr>
<tr>
<td>S.SAF—Indio</td>
<td>4</td>
<td>333</td>
<td>0.0030</td>
<td>0.0036</td>
</tr>
<tr>
<td>Green_Valley—Mason_Road</td>
<td>4</td>
<td>407</td>
<td>0.0030</td>
<td>0.0034</td>
</tr>
<tr>
<td>San_Jacinto—Superstition</td>
<td>3</td>
<td>462</td>
<td>0.0021</td>
<td>0.0020</td>
</tr>
<tr>
<td>Garlock_Central_(all_events)</td>
<td>6</td>
<td>469</td>
<td>0.0007</td>
<td>0.0007</td>
</tr>
<tr>
<td>San_Gregorio—North</td>
<td>2</td>
<td>490</td>
<td>0.0010</td>
<td>0.0010</td>
</tr>
<tr>
<td>Calaveras_Fault—North</td>
<td>4</td>
<td>722</td>
<td>0.0014</td>
<td>0.0016</td>
</tr>
<tr>
<td>Compton</td>
<td>6</td>
<td>1209</td>
<td>0.0004</td>
<td>0.0004</td>
</tr>
<tr>
<td>Elsinore—Julian</td>
<td>2</td>
<td>1755</td>
<td>0.0003</td>
<td>0.0003</td>
</tr>
<tr>
<td>Elsinore—Whittier</td>
<td>2</td>
<td>1801</td>
<td>0.0003</td>
<td>0.0003</td>
</tr>
<tr>
<td>Little_Salmon—Strong's_Creek</td>
<td>3</td>
<td>10890</td>
<td>0.0001</td>
<td>0.0001</td>
</tr>
</tbody>
</table>

Total 0.1117 0.1156

The UCERF3 Paleoseismic data
Selected “independent” sites

<table>
<thead>
<tr>
<th>Index</th>
<th>Site</th>
<th>Most recent event</th>
<th>Poisson rate, lamda</th>
<th>mu</th>
<th>σ</th>
<th>Poisson Survival 1910 - 2014</th>
<th>Lognormal Survival 1910 - 2014</th>
</tr>
</thead>
<tbody>
<tr>
<td>14</td>
<td>N._SAF—Santa_Cruz</td>
<td>1906</td>
<td>0.00944</td>
<td>1.90</td>
<td>0.80</td>
<td>0.375</td>
<td>0.3521</td>
</tr>
<tr>
<td>32</td>
<td>S._SAF—Wrightwood</td>
<td>1857</td>
<td>0.00940</td>
<td>1.93</td>
<td>0.65</td>
<td>0.376</td>
<td>0.2289</td>
</tr>
<tr>
<td>11</td>
<td>Hayward_Fault—South</td>
<td>1868</td>
<td>0.00572</td>
<td>2.18</td>
<td>0.45</td>
<td>0.551</td>
<td>0.5339</td>
</tr>
<tr>
<td>3</td>
<td>Elsinore—Glenn</td>
<td>1910</td>
<td>0.00513</td>
<td>2.21</td>
<td>0.45</td>
<td>0.586</td>
<td>0.8363</td>
</tr>
<tr>
<td>21</td>
<td>San_Jacinto—Hog_Lake</td>
<td>1769</td>
<td>0.00374</td>
<td>2.25</td>
<td>1.07</td>
<td>0.678</td>
<td>0.6509</td>
</tr>
<tr>
<td>9</td>
<td>Green_Valley</td>
<td>1605</td>
<td>0.00296</td>
<td>2.39</td>
<td>0.60</td>
<td>0.735</td>
<td>0.5494</td>
</tr>
<tr>
<td>20</td>
<td>Rodgers_Creek</td>
<td>1708</td>
<td>0.00264</td>
<td>2.40</td>
<td>0.70</td>
<td>0.760</td>
<td>0.6269</td>
</tr>
<tr>
<td>1</td>
<td>Calaveras_Fault</td>
<td>1290</td>
<td>0.00142</td>
<td>2.71</td>
<td>0.62</td>
<td>0.863</td>
<td>0.7604</td>
</tr>
<tr>
<td>8</td>
<td>Garlock—West</td>
<td>1682</td>
<td>0.00079</td>
<td>2.91</td>
<td>0.90</td>
<td>0.921</td>
<td>0.9134</td>
</tr>
<tr>
<td>2</td>
<td>Compton</td>
<td>803</td>
<td>0.00041</td>
<td>3.21</td>
<td>1.00</td>
<td>0.959</td>
<td>0.9481</td>
</tr>
<tr>
<td>18</td>
<td>Puente_Hills</td>
<td>1762</td>
<td>0.00027</td>
<td>3.52</td>
<td>0.30</td>
<td>0.972</td>
<td>1.0000</td>
</tr>
<tr>
<td>12</td>
<td>Little_Salmon—Strong's_Creek</td>
<td>-8878</td>
<td>0.00015</td>
<td>3.51</td>
<td>1.71</td>
<td>0.985</td>
<td>0.9927</td>
</tr>
<tr>
<td></td>
<td>Ensemble</td>
<td></td>
<td>0.04207</td>
<td></td>
<td></td>
<td>0.013</td>
<td>0.0053</td>
</tr>
</tbody>
</table>

Amended to 1918
Cumulative paleo events since 1060

Cumulative events
Santa Cruz, Wrightwood, Hayward S., Hog Lake, Elsinore-Temecula
Survival Function based on single site recurrence parameters

1% probability of no event vs. time for 12 independent sites + ensemble
Possible explanations

- Luck
- Physical process that synchronizes faults and produces occasional long intervals with no paleo-events.
- Mis-identification of paleo-events as earthquakes before the instrumental era, exaggerating the number and rate of earthquakes that displace sediments at trench sites.
Luck

25 rounds of Russian Roulette. \((5/6)^{25}=0.01\)
Survival for modified C.O.V.

Ensemble with UCERF3 parameters and with Sigma = 1.3

97.5% Confidence
Can physics-based simulations explain a 100 year paleo-hiatus at 12 sites?

This particular RSQSIM run does not, but it employs some rather arbitrary parameters, including a high rate of San Andreas events, and other reasonable choices might allow longer intervals?
RSQSim cumulative fraction of 100 year intervals with \(\leq N \) paleo-site hits.

Red: 64 intervals chosen to follow simulated events like 1857 and 1906.

Black: 1000 random 100 year intervals.

Results: Probability of 100 year survival is miniscule.

Thanks to Keith Richards-Dinger, UCR.

UCERF3 faults, 1 km cell size.
UCERF3 TD Quasi-periodic fraction of 100-year intervals with N hits

Thanks to Ned Field, USGS

UCERF3 employs instrumental seismic, geologic slip rate, and geodetic strain rate as well as paleo data.

The paleo test is not a test of UCERF3.
Supercycles?
Supercycles

- Another word for clustering?
- What is cyclic about them?
- Can they fit any actual data? e.g., paleo-events?

"I think you should be more explicit here in step two."
Trench wall cross-section,
San Andreas Fault in Carrizo Plane

From Grant and Sieh, J. Geophys. Res., 1994,
Approaches: Probability of survival 1918 – 2016

- Empirical: event history for 5 independent sites
 - 35 events in 956 years \(\Rightarrow \) rate \(> 0.036/a \) \(\Rightarrow \) \(S(98) < 0.027 \)

- UCERF3 tabulated single site recurrence (Appendices G and H)
 - Poisson 12 independent sites \(S(104) < 0.013 \)
 - Lognormal 12 independent sites \(S(104) < 0.0053 \)

- Physical models and UCERF3 Grand Inversion: a few examples
 - cases only: stay tuned. Note that these results don’t suggest that the models are wrong; they are based on many types of data.
 - Coulomb Rate State 12 sites \(S<0.0001 \)
 - Coulomb Rate State 12 sites Conditional on 1857, 1906: \(S < 0.01 \)
 - UCERF3 GI (32 Sites?): \(S<0.01 \)
Next steps

Earthquake Geology: Establish procedures for multiple independent “diagnoses”

CISM: Predict the past with computer simulations: set up initial conditions at 1932 (?), “predict” later events m6.5+.

CSEP, WGCEP: Devise retrospective and prospective tests for fault rupture: set up “wickets” along faults, and estimate probabilities for all combinations of ruptured wickets (like paleo sites, but wider, and don’t need historic rupture).

All SCEC: Simplify models that convert tectonic moment rate to earthquake rate; apply and test globally.
Conclusions

- One thing is certain: the single site recurrence parameters allow century-long hiatus only at 1% probability.
- Actual paleo-event dates themselves less certain, but they also suggest century hiatuses at a few percent at most.
- Paleo-puzzle has three possible solutions
 - **Extreme luck**: don’t trust it; individual recurrence parameters inconsistent with hiatus
 - **Statewide clustering or “supercycles”**
 - Contrasts with quasiperiodic behavior at individual sites
 - Lacks a physical explanation
 - **Over-estimation of paleo-rates** before instrumental century
 - Stopped by instrumental vetting