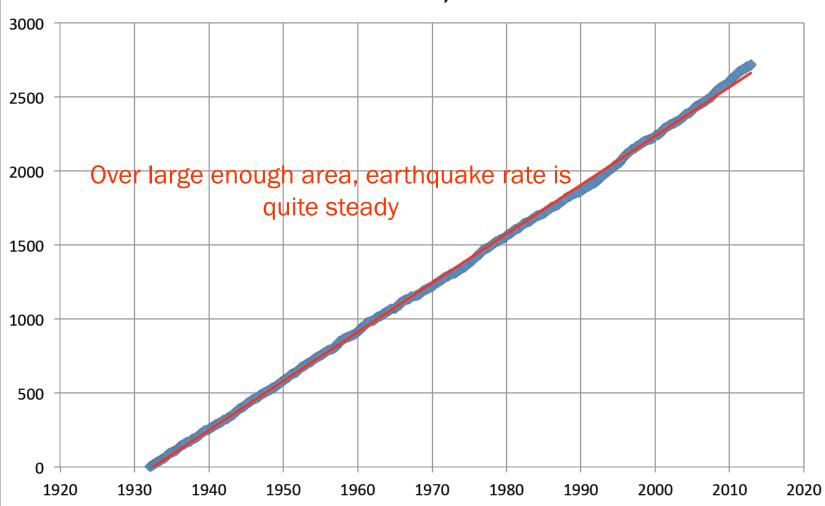
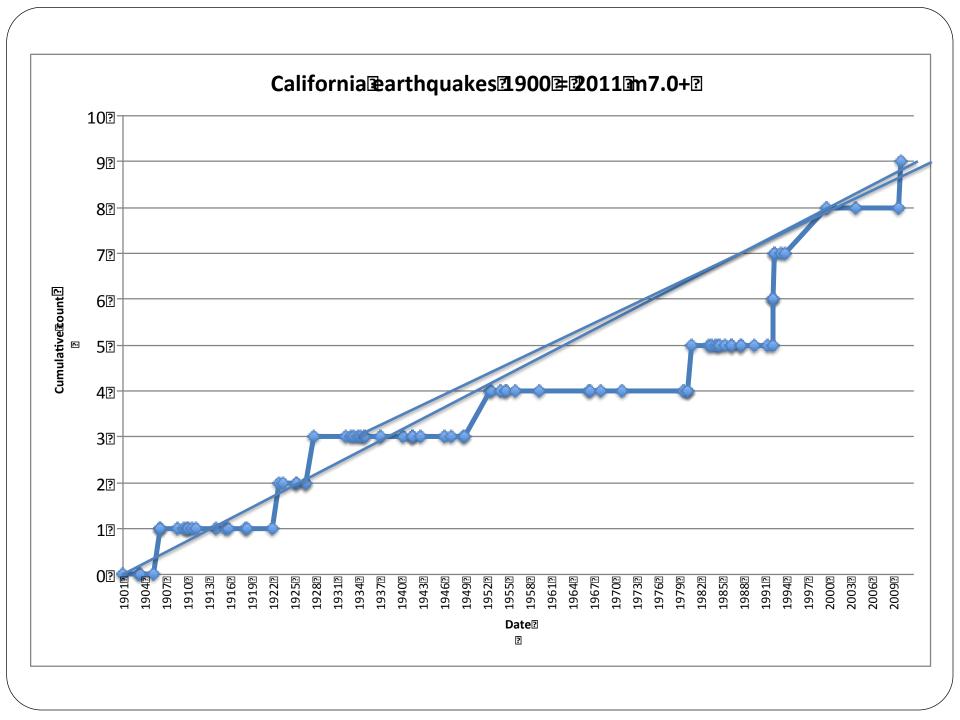
The Bridge from Earthquake Geology to Earthquake Seismology


David D. Jackson djackson@g.ucla.edu


Thanks to Ned Field, Kevin Milner, Kieth Richards-Dinger, Jacqui Gilchrist, Jim Dieterich, Glenn Biasi, and Morgan Page


Common Assumptions

- Sediment offsets in trenches caused by quakes
- Constant rate (earthquakes and strain) in time
- Moment balance (tectonic in = seismic out)
- Magnitudes limited by fault length
- Big quakes occur on big faults
- Important faults are known
- Elasticity
- Quakes caused by stress
- Quakes repeat, but not too soon
- Big and small quakes come from different populations
- Rupture length, width, and slip scale with Moment

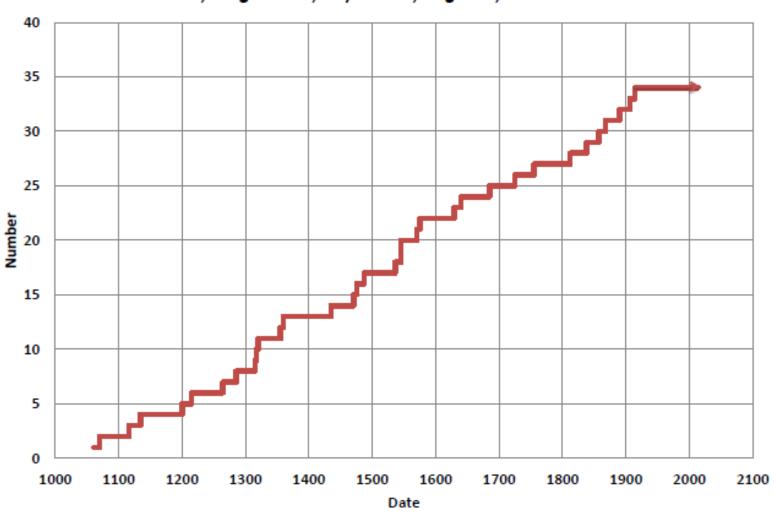
Stability of global earthquake rate

Implications of paleo-seismic studies in California

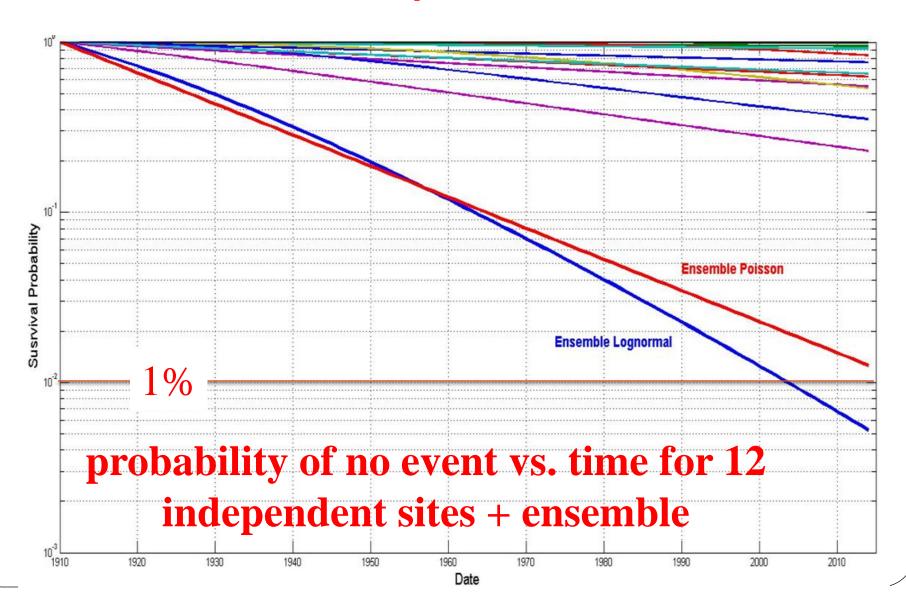
- Paleoseismic data provide the primary support for the assertion that large earthquake rates were higher before 1900 than after.
- Paleoseismic data provide the primary support for the assertion of quasi-periodic recurrence, that is fairly regular time intervals between slip events.

		Open		Lognormal
Site	Events	interval	Poiss rate	Rate
Elsinore—Glen_Ivy	6	102	0.0051	0.0056
NSAF—Santa_Cruz_Segment	10	106	0.0094	0.0091
NSAF—Alder_Creek	2	106	0.0011	0.0011
NSAF—Fort_Ross	4	106	0.0029	0.0033
NSAF—North_Coast	12	106	0.0039	0.0038
NSAF—Offshore_Noyo	15	106	0.0053	0.0053
Hayward_Fault—South	12	144	0.0057	0.0060
SSAF—Wrightwood	15	156	0.0094	0.0094
SSAF—Carrizo_Bidart	6	156	0.0084	0.0087
SSAF—Frazier_Mountian	8	156	0.0071	0.0067
SSAF—Pallett_Creek	10	156	0.0066	0.0067
SSAF—Burro_Flats	7	200	0.0048	0.0049
SSAF—Pitman_Canyon	7	200	0.0055	0.0058
SSAF—Plunge_Creek	3	200	0.0036	0.0049
Elsinore—Temecula	3	203	0.0010	0.0010
San_Jacinto—Hog_Lake	14	243	0.0037	0.0032
Puente_Hills	3	250	0.0003	0.0003
Hayward_Fault—North	8	300	0.0030	0.0031
Rodgers_Creek	3	304	0.0026	0.0031
SSAF—Coachella	7	329	0.0055	0.0056
Garlock—Western_(all_events)	5	330	0.0008	0.0008
SSAF_Mission_Creek,_1000_Palm	5	332	0.0034	0.0038
SSAF—Indio	4	333	0.0030	0.0036
Green_Valley—Mason_Road	4	407	0.0030	0.0034
San_Jacinto—Superstition	3	462	0.0021	0.0020
Garlock_Central_(all_events)	6	469	0.0007	0.0007
San_Gregorio—North	2	490	0.0010	0.0010
Calaveras_Fault—North	4	722	0.0014	0.0016
Compton	6	1209	0.0004	0.0004
Elsinore—Julian	2	1755	0.0003	0.0003
Elsinore—Whittier	2	1801	0.0003	0.0003
Little_Salmon—Strong's_Creek	3	10890	0.0001	0.0001
<u>Total</u>			0.1117	0.1156

The UCERF3 Paleoseismic data


Selected "independent" sites

Amended to 1918

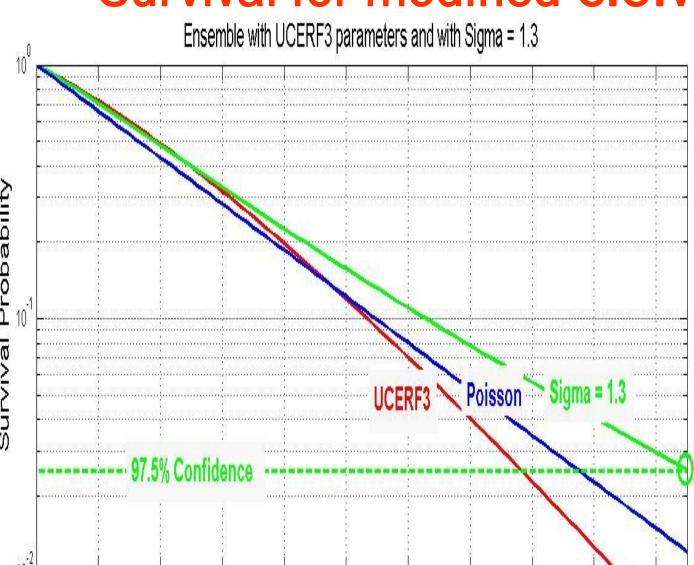

		Most recent	Poisson rate,	mu	σ	Poisson Survival	Lognormal Survival
Index	Site	event	lamda			1910 - 2014	1910 -2014
14	NSAF—Santa	1906	0.00944	1.90	0.80	0.375	0.3521
32	SSAF—Wright	1857	0.00940	1.93	0.65	0.376	0.2289
11	Hayward_Fault	1868	0.00572	2.18	0.45	0.551	0.5339
3	Elsinore—Glen	1910	0.00513	2.21	0.45	0.586	0.8363
21	San_Jacinto—H	1769	0.00374	2.25	1.07	0.678	0.6509
9	Green_Valley-	1605	0.00296	2.39	0.60	0.735	0.5494
20	Rodgers_Creek	1708	0.00264	2.40	0.70	0.760	0.6269
1	Calaveras_Faul	1290	0.00142	2.71	0.62	0.863	0.7604
8	Garlock—West	1682	0.00079	2.91	0.90	0.921	0.9134
2	Compton	803	0.00041	3.21	1.00	0.959	0.9481
18	Puente_Hills	1762	0.00027	3.52	0.30	0.972	1.0000
12	Little_Salmon-	-8878	0.00015	3.51	1.71	0.985	0.9927
	Ensemble		0.04207			0.013	0.0053

Cumulative paleo events since 1060

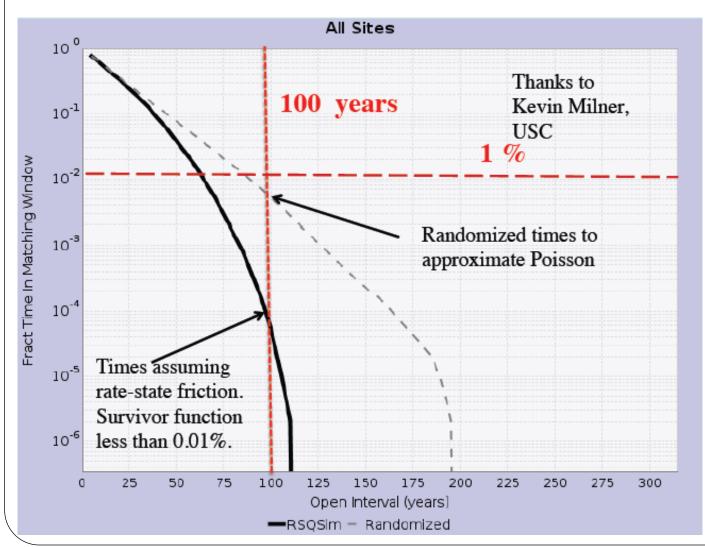
Cumulative events
Santa Cruz, Wrightwood, Hayward S., Hog Lake, Elsinore-Temecula

Survival Function based on single site recurrence parameters

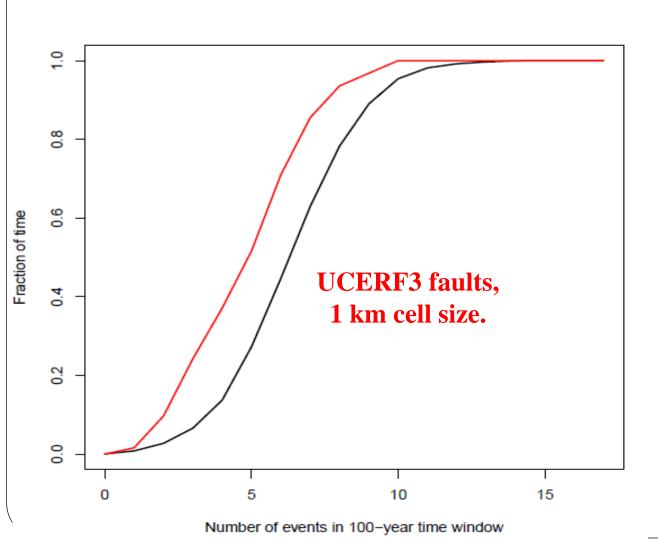
Possible explanations


- Luck
- Physical process that synchronizes faults and produces occasional long intervals with no paleo-events.
- Mis-identification of paleo-events as earthquakes before the instrumental era, exaggerating the number and rate of earthquakes that displace sediments at trench sites.

Luck


25 rounds of Russian Roulette. (5/6)^25=0.01

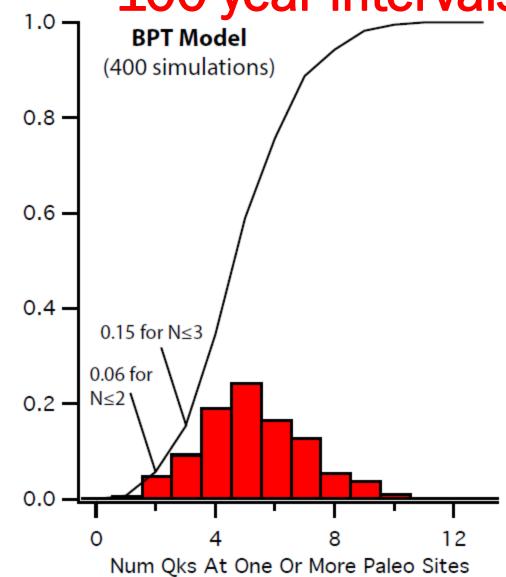
Survival for modified C.O.V.



Can physics-based simulations explain a 100 year paleo-hiatus at 12 sites?

This particular RSQSIM run does not, but it employs some rather arbitrary parameters, including a high rate of San Andreas events, and other reasonable choices might allow longer intervals?

RSQSim cumulative fraction of 100 year intervals with ≤N paleo-site hits.

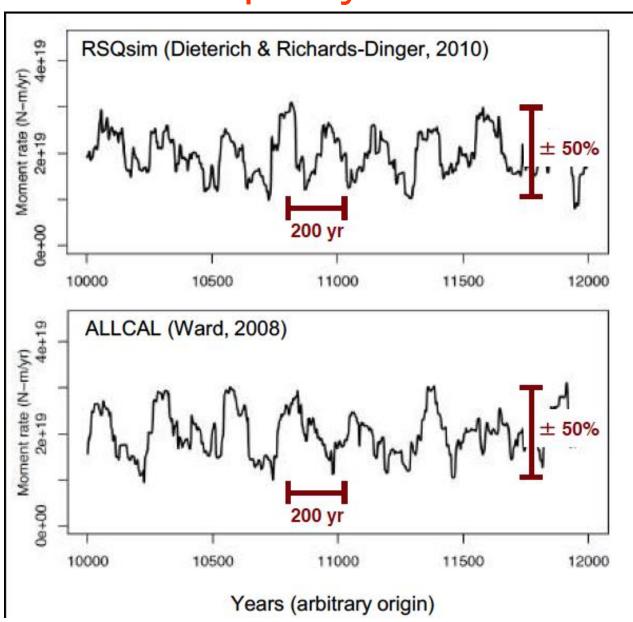

Red: 64 intervals chosen to follow simulated events like 1857 and 1906

Black: 1000 random 100 year intervals.

Results: Probability of 100 year survival is miniscule.

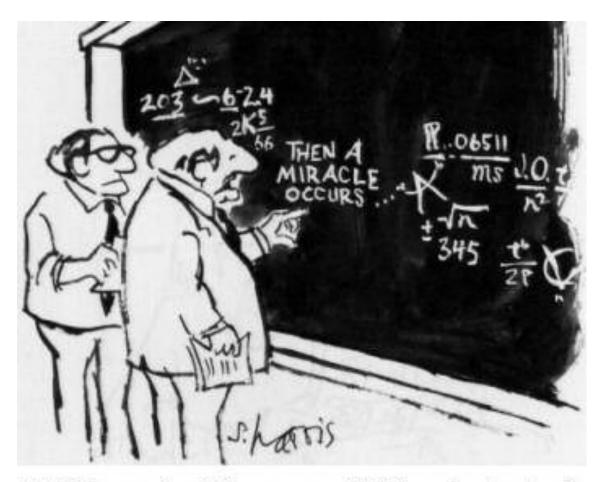
Thanks to Keith Richards-Dinger, UCR.

UCERF3 TD Quasi-periodic fraction of 100-year intervals with N hits


-raction

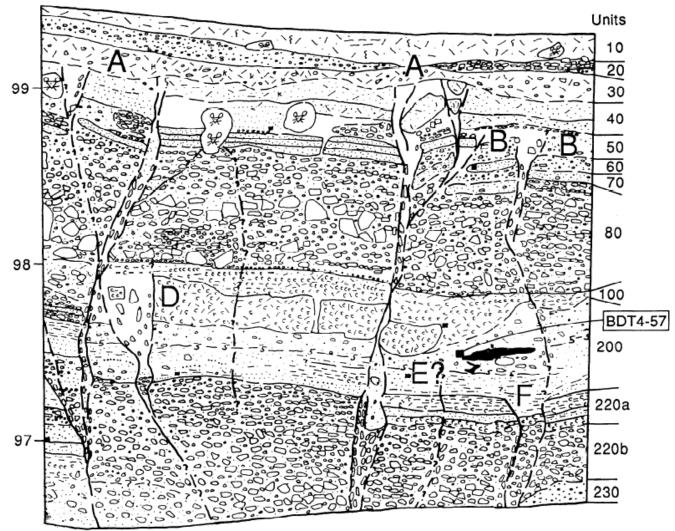
Thanks to Ned Field, USGS

UCERF3 employs
instrumental seismic,
geologic slip rate, and
geodetic strain rate as
well as paleo data.


The paleo test is not a test of UCERF3.

Supercycles?

Supercycles


- Another word for clustering?
- What is cyclic about them?
- Can they fit any actual data? e.g, paleo-events?

"I think you should be more explicit here in step two."

Trench wall cross-section,

meters San Andreas Fault in Carrizo Plane

From Grant and Sieh, J. Geophys. Res., 1994,

Approaches: Probability of survival 1918 – 2016

- Empirical: event history for 5 independent sites
 - 35 events in 956 years \rightarrow rate $> 0.036/a \rightarrow S(98) < 0.027$
- UCERF3 tabulated single site recurrence (Appendices G and H)
 - Poisson 12 independent sites $S(104) \le 0.013$
 - Lognormal 12 independent sites $S(104) \le 0.0053$
- Physical models and UCERF3 Grand Inversion: a few examples cases only: stay tuned. Note that these results don't suggest that the models are wrong; they are based on many types of data.
 - Coulomb Rate State 12 sites S<0.0001
 - Coulomb Rate State 12 sites Conditional on 1857, 1906: S < 0.01
 - UCERF3 GI (32 Sites?): S<0.01

Next steps

Earthquake Geology: Establish procedures for multiple independent "diagnoses"

CISM: Predict the past with computer simulations: set up initial conditions at 1932 (?), "predict" later events m6.5+.

CSEP, WGCEP: Devise retrospective and prospective tests for fault rupture: set up "wickets" along faults, and estimate probabilities for all combinations of ruptured wickets (like paleo sites, but wider, and don't need historic rupture).

All SCEC: Simplify models that convert tectonic moment rate to earthquake rate; apply and test globally.

Conclusions

- One thing is certain: the single site recurrence parameters allow century-long hiatus only at 1% probability.
- Actual paleo-event dats themselves less certain, but they also suggest century hiatuses at a few percent at most.
- Paleo-puzzle has three possible solutions
 - Extreme luck: don't trust it; individual recurrence parameters inconsistent with hiatus
 - Statewide clustering or "supercycles"
 - Contrasts with quasiperiodic behavior at individual sites
 - Lacks a physical explanation
 - **▶** Over-estimation of paleo-rates before instrumental century
 - Stopped by instrumental vetting