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"The southern San Andreas fault is 20 months pregnant”
Kerry Sieh, 1986

What does that mean?

It has been ~300 years since the last large southernmost San
Andreas surface rupture, and the average recurrence interval
for the past 1000 years is more like 200 years.

So, what's going on?




Paleoseismology is reproducible — multiple trench sites along a fault
usually yield the same information on the timing of past earthquakes,

And determination of displacement demonstrates that these “events”
Are real earthquakes
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First, for the southern 160 km of the San Andreas fault
system — we need to develop a common chronology
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382 radiocarbon dates from paleoseismic sites at
or below the shoreline of Lake Cahuilla

Used 88 dates in the Oxcal model to resolve the
timing of lake high-stands
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Multiple lines of evidence for surface ruptL]res in
multiple trenches




Coachella Site — southern San Andreas Fault (Philibosian et al., 2011)

Two most recent southern San Andreas events occurred during
Lakes 1 and 2. Beautiful seismites, slump features indicate

presence of water in both events — occurred during high lake
stands.



Coachella paleoseismic site,
southern San Andreas fault

(Philibosian et al., 2011)
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Southern San Jacinto Fault Zone

Superstition Mountain Fault

Superstition Hills Fault
Coyote Creek Fault

Epicenter, April 9, 1968
46 =5
%@

to Julian

Ocotillo Badlands ’
Clark ct al. (1972) and Sharp (1981)

\ K o ":'f.' P ire
) Lake Cahuilla shoreline [F= -
[ Carrizo Wash sito § -l

Sa = N. Shoreline site

o=
ok

1o Plaster Ciy | EXRl
O1C. Sl




lakebed ; ;
1968 rupture (central and south break) SR <— Lake Cahuilla shoreline [Southern Shoreline site

a ~ N Clarketal.'72 T
ﬁperstition Mountain .

Superstition
Mountain fault

N

M

|Northern Shoreline Site]

|Midd|e Break site ]

0 5 10 km

Figure 2. Map showing the trench sites relative to the 1968 surface rupture, Superstition Mountain, the Cahuilla shoreline and area of lake inundation.




The north margin of the unit E channel is traced into and across the
fault zone, yielding ~2.2 m of RL offset in the MRE
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Map of trenches, Carrizo Wash Site
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Event 1 - ca AD 1680 - ruptures Lake 2 with cracking and minor slip (~15 cm),
capped by Lake 1: interpreted to be a Coyote Creek fault event
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Bottom line —we can resolve both timing and displacement, even
for moderate-sized earthquakes, and distinguish moderate from
large earthquakes — just takes work!
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South Break Site on the southern Coyote Creek fault
















Map View of T -1

, 2m
——————————

hes

q_ault
‘Traces -
Fault

Traces

[
Shoreline
- . Gravel
Shoreline |
Gravel




0
<
L
o
>
S
©
C
o
©
@)

Construct rupture history of the southern San Jacinto fault zone
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New LiDAR and field mapping results on slip
distribution from the Coyote Creek Fault
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Northern Coyote Creek Fault: ~1-1.cm slip per event
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Okay, what about the south central San Jacinto fault?
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Hog Lake T4 - records ruptures and folding
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Development of a long record requires an exceptional

site with excellent preservation of strata and abundant

Dateable material, such as peat or seeds
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Signature of a past earthquake surface rupture
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Figure 10. Rockwell et al.

Primary fault breaks to a paleo-ground surface, and is capped
by undeformed strata

Rockwell et al., 2014






Generalized Stratigraphy of Hog Lake

Unit Descriptions (primarily from trench T2N)
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Hog Lake Rupture Sequence, Model 1 - all radiocarbon dates, all earthquakes
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Clark strand of the San Jacinto fault (main strand)
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Slip Rate can be built by repeated ruptures
similar to the November, 1800 earthquake

Rockwelletal. (1990) 13 4%3%,.  Blisniuk et al. (2013)
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Distance From South End of Clark Strand of San Jacinto Fault

Displacement inferred for the April 21, 1918 earthquake slip data from Salisbury et al. (2012)
Displacement inferred for the November 22, 1800 earthquake

So the paleoseismic record combined with the slip per event record
should predict the long-term slip rate



Clark Lake Paleoseismic Site
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Rupture history of the San Jacinto fault
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Catalogue and Model Construction

Use slip rates determined from geology, GPS and InSAR (cf. Fialko, 2006)
Combine with estimates of locking depth (cf. Smith-Konter et al., 2011)
Estimate expected moment release for past 1100 years

Compile all paleoseismic data, including timing and displacement
Build a catalogue that includes estimated magnitudes based on
displacement data. Estimate seismic moment based on
displacement and the same locking depth used to estimated

expected long-term moment accumulation.

Compare inferred moment release to expected moment release
for the past 1100 years



Table 1. Catalog of Paleoseismic Events in the southern 150 km of the San Andreas fault system

Fault EQdate uncertainty EQ date(2) uncertainty Magnitude Inferred Rupture Rupture Inferred Seismic References and notes
(AD) range (95%) (AD) range (95%) Estimate Average Slip (m) length (km2) depth (km) Moment (dyn-cm)

San Andreas F
Event 1 1706-1722 1690 >1520-1680 3 1.53E427 Philibosian et al. (2011); Coachella site on the SAF south of the juncture between
Event 2 1592-1664 7. 1.53E427 the Banning and Mission Creek faults; event 3 is questionable; ages recalculated
event 3 1459-1503 1502 1450-1555 3 1.53E+427 based on new Lake Cahuilla model of Rockwell et al. (2016 in progress).
event 4 1281-1300 r 1.53E427 (2) Fumal et al. (2002);Thousand Palms site on the Mission Creek fault
event S 1174-1259 1231 1170-1290 g 1.53E+27 Also used Sieh (1986) from the Indio shoreline site, and Williams unpublished
event 6 1010-1100 g 1.53E+27 data from the Salt Creek site
event 7 931-1008 982 840-1150 K 1.53E+27 Yields about 19 mm/yr for SAF between Banning Pass and Salton Sea
825 770-890 1.07E428
Clark strand, SIF
Event 1 1918 5 1.30E426 Rockwell et al. (2015)
Event 2 1800 . 3 9.76E+26 Buga et al (2015); Inferred to be same events as at Hog Lake based on
event 3 1577 1535-1627 > 2 9.76E+426 geomorphology and radiocarbon dating of event stratigraphy
eventd 1357 1303-1389 2 ) 9.76E+26 Salisbury et al. (2012); slip distribution and average slip in past 3 large
event 5 1311 1280-1362 t 1.30E+26 Clark F. earthquakes, plus slip in 1918
event 6 1289 1267-1315 3 3 1.30E+26 Moment estimates from Rockwell et al. (2015)
event 7 1193 1118-1267 % . 9.76E426 Needed to decrease average slip estimate by 10 % to match slip rate
event 8 1080 1028-1144 4 1.30E+26
event $ 947 842-1020 . g 9.76E+26
S5.40E+27 Yields 12.6 mm/yr for Clark fault in past 1100 years
Casa Loma strand, SJF (assume it ruptures with most ar all Clark fault or Clairmont fault events)
Event 1 1899 6.5 6.70E425 Topozzada et al. (1980)
Event 2 1800 or 18127 6.5 X 6.70E425 Most events are inferred to have possibly ruptured with either the Clark fault or
Event 3 1698 1665-1820 6.5 i 6.70E+25 the Claremont fault when they move (Onderdonk et al., 2013; Rockwell et al,,
Eventd 1577 1535-1627 X 6.70E425 2015). The Casa Loma fault should rupture about every 50 years with a fault
Event S 1428 1403-1445 5 X 6.70E+25 slip rate of 12 mm/yr if it breaks on its own. Assuming rupture with either the
Event 6 1357 1303-1389 J X 6.70E425 Clark or Claremont strands accounts for over half of expected moment release.
Event 7 1342 1273-1419 A 6.70E425 The other half is assume to be released in 1899-type short segment ruptures.
Event 8 1311 1280-1362 % X 6.70E425
Event 9 1289 1267-1315 . . 6.70E+25
Event 10 1193 1118-1267 . A 6.70E425
Event 11 1080 1028-1144 Y 6.70E425
Event 12 947 842-1020 ¢ K 6.70E425
8.04E+26
Supersition Mtn - Coyote Creek F
CCF-1 1968 : : 3.35E+25 Rockwell et al. (2000); Ragona et al. (2003); Verdugo et al. (2007)
CCF-2 1795 1720-1850 1.43E426
CCF-3 1710 1701-1719 : 3 3.35E425 Gurrola and Rockwell (1996), Altangerel and Rockwell (2005)
SMF-2 (SMF-CCF) 1650 1547-1655 i 5.70E+26 CCF likely ruptures every
SMF-3 (SMF-CCF) 1323 1310-1365 5.70E426
SMF-4 (SMF-CCF) 1017 980-1046 . . 5.70E+426
1.92E427 Yields 6.8 mm/yr for the Coyote Creek - Superstition Mountain fault, 1100 yrs

Carrizo Mtn cross fault . 6.70E425

Superstition Hills F
Event1 1 X 6.77E425 Slip rate is poorly constrained. At 4 mm/yr, should generate a Mw6.5 about
Event2 1680-1892 3 . 6.77E+425 every 175 years
3.38E+426 Moment sum assumes a Mwe6.5 every 175 years, 5 events in 1100 years
Southern Elsinore F
Event 1 cal750 1680-1800 % 2.28E426 Rockwell (1991); Rockwell, unpublished C14 data
Event 2 ca 1000 800-1200 . A 2.28E426 Assumes rupture of entire EF within the "box"
4.56E+26 Yields 3.6 mm/yr for past 1100 years based on 2 events - unreliable for rate

Central Elsincre F No ruptures in past 1200 years Thorup (1998)

Northern Elsinare F.
Event1 ca 1750 1680-1810 L . 6.25E426 Vaughan et al. {1999); Rockwell et al. (1986); Rockwell et al (2001)
Event 2 1375 1274-1474 2 3 6.25E+26 (from Whittier/Chino bifurcation to Palomar Mtn)
event 3 1050 1015-1104 ‘. B 6.25E426
1.88E+27 Yields 5.7 mm/yr for past 1100 years. Short record (3 events)

Sum of moments on major faults 2.16E+28 equates to 33 mm/yr, includes most faults with incomplete records
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Evidence for Coa-3 on the SAF was weak — what if this was not an
Earthquake? (Philibosian actually describes it as only a possible event!)
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Results in a more “clustered” behavior
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Is there a relationship between Lake Cahuilla highstands
(water loading) and earthquakes? Maybe so...
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Mode-switching (Ben-Zion et al. EPSL, 1999): Long-term fluctuations between
overshoot and undershoot seismic activity on heterogeneous faults (for which steady

state response does not exist)

A large individual fault system: Coupled evolution of earthquakes
Frictional weakening and some dissipation and faults: Loading timescale ~ healing
of stress transfer --> Mode Switching timescale --> Mode Switching

Distributed Damage
(fault zones) / )

h=20km

Evolving Elastic ity
Upper Crust (B L
M1 =
I

|8

V =0.25

N
Y
g™
- ‘, —_Viscoelastic Lower Crust
Loading by ¥ 2~~~
.oading by ¢ T PN

Iaton Viscoelastic < a
Mantle
(half space)

-100 km

Time Series of Earthquake Sizes
and Configurational Cntropy

GR

Eanhquake Siza

Magnitude

Entropy

'"'s&m'“;#m ——t B o B LA S e
8 9 10 11 12 13 14 15

Time VT
Time t/T

G




ake home message

The best paleoseismic data includes information on both
timing and displacement, and there is a lot of it for the
Southern San Andreas fault system.

Need to look at the entire fault system, not just one element

Appear to have been periods of higher and lower strain
release resulting in apparent clustering of earthquakes

Past extended open intervals were followed by rupture of
several faults, so a single large event may simply be the
beginning. Will this result in the century of earthquakes?






