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Figure 1. Schematic of FNO structure from Kong et al. (2025). Top Left: Input parameters of the Helmholtz FNO. Top Right: Wavefield 
outputs from the FNO. Bottom: Structure of the FNO layers used in the inversion. 

Introduction
Seismic imaging methods provide constraints on subsurface structure and 
improve waveform predictions. However, the computational cost of 
computing these models limits the ability to calculate uncertainty and 
push models to frequencies that are relevant to seismic ground motion 
modelling. Machine learning methods can tackle both uncertainty and 
higher frequencies efficiently at the cost of computing training data. In this 
study, we use Fourier Neural Operators (FNOs), a recently-developed 
machine learning method, to speed up forward calculations of synthetic 
data and source inversions in the greater Bay Area. We present the 
methodology of how we compute our training dataset to best capture the 
range of possible sources and structures in the Bay Area. We also show 
preliminary results of comparing the FNO-outputted synthetics with data 
from real events within our region of interest. Finally, we discuss how FNO 
models can also speed up focal mechanism inversions on top of inverting 
for material properties. 

Fourier Neural Operators
• Fourier neural operators (FNOs) are a machine learning technique that 

can determine the solution operators of partial differential equations 
such as the wave equation used to forward model synthetic data 
through Earth models.

• FNOs can operate on data in both the time domain (e.g., Yang et al., 
2021, 2023) or in the frequency domain (e.g., Kong et al., 2025; Zou 
et al., 2024).

• In this study, we solve the Helmholtz equation in the frequency domain 
for faster calculations in 3D. We solve for 11 discrete frequencies in our 
frequency band of interest.

• The FNO model takes these 11 frequencies, a velocity model, source 
location, and source properties (strike, dip, and rake) as inputs and 
outputs the real and imaginary wavefield (Figure 1).

Generating Training Data for the Bay Area
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Figure 5. Source Inversion results using the FNO for a “good” starting solution (left panel) and for a ”bad” starting solution (right panel). The ground 
truth moment tensor is plotted in red, the starting solution in black, and the moment tensor after 100 iterations in blue. Mean square error (MSE) 

loss, strike, dip, and rake values at each iteration are shown in the graphs below the moment tensors.
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Fourier Neural Operators (FNOs) are a machine learning technique that quickly and accurately determines solution operators of partial differential equations. This method shows great promise for improving the speed of 
forward calculations in full waveform seismic imaging and ambient noise tomography (e.g., Kong et al., 2025; Yang et al., 2021, 2023; Zou et al., 2024). We present the foundational work for an FNO model trained for a 
160kmx160kmx80km region in the greater Bay Area. We computed training data for the FNO model using Salvus (Afanasiev et al., 2019) and present our current method for computing training data.  We compare the 

results of our model trained on a subset of our training dataset with observed data from moderate-magnitude (Mw 3.5-6) Bay Area earthquakes to show good fit to data in our target period band of 5-30 seconds. We also 
show that the FNO architecture can be used for faster focal mechanism inversions, converging to similar solutions to published catalogues even if the model’s first guess is significantly different from the final solution. 

Source Inversion Results
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Figure 2. Bay Area region targeted for FNO training. Grid points for 
FNO training are plotted as white dots. 

Figure 3. Vp and Vs values for interpolated Gil7 model used as the 
baseline model that we perturbed using von Karman random field 
perturbations(Dreger and Romanowicz, 1994; red line). Black lines 
represent the 1D velocity models at each grid point in an example 

training model.  

Region of Interest

• Training data calculated for 
160kmx160kmx80km  region in the 
greater Bay Area (Figure 2)

• Train on model discretized to 32x32x16 
grid points, which translates to 5km 
grid spacing in all dimensions

Training Sources

• Use randomly generated strike, dip, and 
rake values placed at a random grid 
point

• Input sources are purely double-couple

• Moment is held fixed for all events at 
1015 N-m

Frequency Band 0.033-0.2 seconds

Input Velocity Model Modified Gil7 1D 
model

Absorbing Boundary 
Type Sponge Layer

Absorbing Boundary 
Distance 20 km

Runtime per Salvus 
simulation ~8 seconds

Velocity Model: Used an interpolated version 
of the Gil7 model (Dreger and Romanowicz, 
1994) as baseline model. We then introduced 
random variation in the Vs and Vp models 
using von Kármán random field perturbations. 
Density values are held constant at 2.7 g/cm3 
throughout the domain as density variations in 
the region are small and have minimal effect 
on simulated data. 

Boundary Conditions: To minimize boundary 
effects, we implement a 20km sponge layer on 
all edges of our domain (excluding the free 
surface) to absorb reflections and minimize 
artefacts in the simulated data. 

Key Training Parameters

• FNO model can also be trained to invert for source parameters (strike, dip, 
and rake).

• We tested source inversions on simulated and real data in the Bay Area.

• Regardless of the similarity of the input solution to the ground truth, the 
FNO model converges on the correct solution within 100 iteration. FNO will 
also sometimes converge on auxiliary plane.

• We are currently testing a version of the FNO model that will invert for 
strike, dip, rake, and magnitude simultaneously. 

• We compare the simulated data 
produced by Salvus with observed 
data from an earthquake in our 
domain of interest.

• For Mw4.0 test event that occurred in 
Dublin, CA (roughly in center of the 
domain), waveforms recorded at 
stations within 50km of the event 
show good fit between synthetic and 
observed data. 

• Errors propagate more at distant 
stations; training with a larger dataset 
will likely decrease these errors. 

• Path-specific errors: Synthetics are 
shown between the nearest grid 
points to the event and station, so 
synthetic and observed data paths 
have slight discrepancies, which 
contribute to some of the misfit. 

Comparing Simulated and Observed Data

Figure 4. Forward waveforms (red waveforms) from a preliminary 
FNO model trained on the Bay Area for a Mw4.0 event that occurred 

on February 3, 2003 in Dublin, CA. Observed data are plotted as 
black waveforms. The corresponding station name and source-
receiver distances (in km) are listed at the end of the waveform. 


