Fast Dynamic Rupture and Earthquake Cycle Simulations with a Fourier Neural Operator-Based Framework

Napat Tainpakdipat¹; Mohamed Abdelmeguid²; Chunhui Zhao¹; Kamyar Azizzadenesheli³; Ahmed Elbanna^{4,5}

¹University of Illinois at Urbana-Champaign; ²California Institute of Technology; ³NVIDIA ⁴Statewide California Earthquake Center; ⁵University of Southern California

1. Introduction

Earthquake modeling captures the multiscale nature of fault processes, spanning spatial and temporal scales from slow aseismic slip to rapid dynamic rupture. Classical physics-based modeling, while accurate, is computationally expensive. To address this challenge, we present a computationally efficient and quantitatively accurate surrogate modeling approach. Specifically, we develop a Fourier Neural Operator (FNO)based framework to approximate the nonlinear equations governing dynamic rupture and earthquake cycle simulations.

The surrogate model is trained on synthetic data generated from multiple physics-based simulations and is then applied to previously unseen scenarios. We demonstrate its generalization capability under unseen conditions. Additionally, we apply the FNO-based framework to model aseismic slip within earthquake cycles. The code from this study will be made available through Quakeworx, an NSF-funded science gateway for earthquake simulations and data.

2. FNO for Dynamic Rupture Modeling

Methodology

We develop an FNO-based framework for both 2D and 3D dynamic rupture, capturing the full spatiotemporal evolution of slip rate under rate-andfriction. Training data are generated with the Spectral Boundary Integral (SBI) method, with variations

- Initial shear stress: Varying fractal dimensions(D)
- Frictional parameters: a and b
- Initial slip rate: Maximum value greater than V_{th}
- Nucleation site: Uniformly random, at the maximum shear location, or at the fault center

Inputs: Initial Fractal Shear Stress (τ_{zx0}) , Slip

Rate (V_{zx0}) , Frictional Parameters (a, b), and

Nucleation Perturbation ($\Delta \tau_{zx}$)

Inputs: Initial Fractal Shear Stress (τ_0) , Slip Rate

 (V_0) , Frictional Parameters (a,b), and Nucleation

Perturbation $(\Delta \tau)$

x (km)

3. FNO for Earthquake Cycle Simulation

Methodology

- Goal: Model full earthquake cycles with a physics-FNO hybrid.
- Aseismic phase: Approximated by recursive FNO predictions, trained on overlapping slip windows with adaptive time stepping.
- Seismic phase: The final aseismic state is passed to a hybrid finite element-spectral boundary (FEBE) scheme for dynamic rupture.

Results

Time series of the hybrid FEBE-FNO model compared with groundtruth solutions from the unseen test set:

Simulation Phase	FEBE Running Time (s)	Hybrid scheme running time (s)	Speed-up vs. FEBE
Aseismic period	8,290	0.288	28,785
Two seismic cycles	31,865	15,191	2.1

4. Conclusion

- FNO provides a speed-up compared to numerical simulations. For dynamic rupture simulations, we achieve up to 4×10^5 times speedup, and 28,785 times in aseismic phase modeling.
- We demonstrate that FNO can generalize to unseen cases involving initial stress, slip rate, and frictional parameters.
- This increase in computational speed-up, in combination with the demonstrated generalizability of FNO, may enable dynamic source inversion, large-scale statistical analysis, systematic parameter exploration, and probabilistic hazard assessment.

Model Parameters for Training:

0.009, 0.008,

0.007, 0.006,

0.0085,

velocity-strengthening

Outputs: Evolution of *V* Over Time

 $t_0 + 0.4 s$

1.2, 0.012,

1.5, 0.014

velocity-

transition layer

(s/epoch)

594

30

Parameter

 2.7×10^{8}

 2.3×10^{6}

Speed-up vs. SBI

 4×10^{5}

 2×10^{5}

