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We show that exact entorcement of boundary conditions improves approximation accuracy of PINNs at an increased cost to

Plane strain domain
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Fig. 1: 2D schematic of a dynamic plane strain problem. Strain (g)-displacement(u) relation is shown and stress
o is given in terms of shear modulus ¢ and Lamé’s first parameter A.

Physics-informed ne

PINN architecture:
Given a generic 1nitial-boundary-value problem(IBVP)

LluA(x) =k(x), x €0,

Blu;\ (x) =g(x), x €0,

we define a neural network A/ which aspires to be the IBVP solution «. To this
end we define the loss components
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Fig. 2: A schematic of the PINN architecture for solving a generalized boundary value problem. Displacement
approximation network N is trained on interior and boundary subdomains which are governed by operators £
and B, respectively.

Soft and Hard Enforcement of Dirichlet and

General Solution Form: PDE Residual:
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Implici

The general solution form of an initial boundary value problem can be given by

n n
u=>Y uWi+N][e¢"
1=1 1=1

where ¢, approximates the distance to boundary ¢ for which conditions u; of
order u,;_; are interpolated by W;.

Approximate Distance Functions (ADF): Given an implicit representation f of
a curve, we construct a convex trimming region that contains a desired segment
of f. Using R-function theory we can approximate the distance ¢ to the segment
of f contained in ¢. Figure 3 shows the relevant functions for a simple Bezier

curve.
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Fig. 3: Elements of an approximate distance function (ADF) to a Bezier curve defined by control points
P ={(0.0,1.0) (0.5,1.0) (1.0,0.5) (1.0,0.0)]. From left top right, f shows the implicit Bezier curve, ¢ the
trimming function defined by the convex hull of P and ¢ the approximate distance function.
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Interpolation Bases: From a set of boundary adf {¢;}, we define the interpo-
lation basis {W;};*, by inverse distance weighting
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Fig. 4: Interpolation bases for each spatial boundary on (2. (a) and (b) show left and right bases where p1 = 2 is
used to interpolate Neumann conditions. Similarly, (¢) and (d) show top and bottom with ;¢ = 1 for interpolating
Dirichlet conditions.

Objective function to be minimized
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Results

We first construct a solution to the plane strain problem where each boundary in
space 1s constrained by a Dirichlet condition.

Network Approximation and Manufactured Solution
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Fig. 5: Comparison of results for a neural network solution to the plane strain equations where each space-time
boundary condition is hard-enforced. Network uses 3 hidden layers with 128 neurons each and was trained on 1000
random interior points for 1000 iterations of L-BFGS.

Hard-enforcement achieves lower L2—error but with an increase to total training
time.

Network Performance Over Various Boundary Enforcements
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Fig. 6: Comparison of network performance over various configurations of hard and soft boundary enforcement.
Each scenario uses a network with 3 hidden layers, 128 neurons each, trained on 1000 random points over 1000
iterations of L-BFGS. Number of training points 1s kept constanct by projecting the randomly sampled interior
points onto relevant boundaries in each scenario. Exact order for progressively adding soft boundaries is: top,
bottom, right, left, initial, with the initial boundary representing two conditions: displacements and velocities.

e Exact enforcement of boundary conditions over implicitly defined ¢ Hard and soft boundary enforcement are tested on a plane strain prob-

lem with Dirichlet conditions constraining spatial boundaries.

e Mixed boundary enforcement for physics-informed neural networks. ¢ Hard enforcement offers greater accuracy over soft enforcement but

comes with an increase to the total training time.
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