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Inversion of GNSS and InSAR
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The best-fit linear combination of response functions that can predict GNSS and InSAR is obtained by
performing Ridge regularization (L2 norm).
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Spatial gradients of force rate and implication for fault related
deformation field
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Figure 3. Input GNSS velocities from Blewitt et al. 2016 (NGL’s
MIDAS) and Zeng 2022 in blue arrows and predicted velocities from
the Joint Inversion in voilet arrows. Horizontal velocities are in an
ITRF14. 338°

34.2°

33.4°

| gigt
N
~10000-8000-6000-4000-2000 0  200Q, 4000 6000 8000 10000
33.0° N
2500x10-1
226 Eigenvectors of spatial gradients of force rate

Figure 7. Contoured background shows divergence of spatial gradients of dilatational component of force rate field.
Eigenvectors of spatial gradients of force rates, equal to directions of maximum (convergence rate) and minimum
(divergence rate) in force rate gradients.

Figure 4. (a) Dilatational and (b) Shear component of force rates (Vertical derivative of horizontal shear stress rates VDoHS) at the surface obtained from the
Joint Inversion.

Implications for along-strike slip-rate variation in force rate 1-dimensional functional forms of horizontal component
surface velocities, strain rates, VDoHS rates and gradients
of force rates for a vertical strike-slip fault

Faultlocation
and ma shear

_—

Negive lobes

. . . 10
Figure 6 H. i the peak width for gradient o frce rates, bounded T T 2o B a9 Y
Figure 5. v F: is0.87H. 33.0° Y

= o
1000x102/km?fyr
3260  Eigenvectors of spatial gradients of force rate change

Strain rates and velocities with depth : Figure 8. Background shows the shear component of the spatial gradient field of force rates GI_F

dFy/dy). The arrows show cigenvectors of spatial gradient of force rate change, as in Figure 7. The width of the belt

Assume linear relationship of gradients of velocity with depth of positive G1_F (labeled Hr in Figure 6) that runs parallel to the major strike-slip transform faults is proportional to
fault locking depth. Note that double lobes of opposite sign, on cither side of the positive anomaly, is a signature of
f;‘_’ (2) = @z + by elastic locking on major transform faults.
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: ; Eﬂ ; Figure 9. Background shows the shear component of the spatial gradient field of force rates G1_F

dFy/dy). The bars show directions along which the spatial gradients in force rate are zero. These directions align with
major strike-slip structures and their magnitudes (length of lines) also predict location of maximum shear along with
the sense of slip (right-lateral or left-lateral) on those faults.

Figure 10. Comparison of strain tensor with the Kostrov summed

moment tensors (Cheng et al. 2021) for both surface and at depth (10
km).
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