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barriers. However, physical controls of this
segmentation remain unclear. Here, we
analyze one year (2008) of ocean bottom
seismometer data and develop a focal
mechanism catalog of 3,122 earthquakes on
the westernmost Gofar transform fault to
investigate faulting style and stress regimes.
Pure strike-slip earthquakes comprise only
20.5% of events; most are oblique, reverse,
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201 ' - Strike slip (SS), normal (N) and reverse (R) events are prevalent along the fault.
50 OO 'O‘ - Focal mechanisms suggest a uniformly distributed stress orientation along the fault.
O‘ " , ‘ - P-axes of R events closely align with the inverted g4 direction; T-axes of N events generally
‘ QQ ‘ - P match the observed o3 direction with a ~15° deviation.
0 “ Q O O - Secondary structures are observed, such as the one shown with normal faulting events.
- Mainshock rupture zone has mechanisms more similar to the mainshock (smaller Kagan
70 : angle); rupture barrier zones have dissimilar mechanisms (larger Kagan angle).
S nslisise - — After Mainshock - Percentage of SS events is high in rupture zones and low in barrier zones.
/ \ ; - == Before Mainshock - Percentage of R, R-SS and SS-R events is high in barrier zones.
- Tan et al. Variations in o 00 - Coulomb failure modeling indicates high R, R-SS and SS-R percentage and low SS
SEeiE el PrEERiies b percentage are related to low friction coefficient and high pore fluid pressure.
gontrrc])il Sﬁg:‘efgti:'gn Ol{ c - Barrier zones have distinct subzones, with short 2—3 km patches having the highest pore
ceanic 1rans aus: o 501 fluid pressure, preventing the main rupture propagation.
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- Gong & Fan (2022). o \\
Seismicity, Fault o RO From temporal distribution of focal mechanisms
Architecture, and Slip Mode g 40 S
of the Westernmost Gofar > T ( . . . . . )
Transform Fault. JGR. < - Focal mechanisms are less similar to mainshock after the mainshock in all zones.
- Kagan (2007). Simplified 30 - Inter-event Kagan angle increases after the mainshock in all zones, meaning focal
algorithms for calculating mechanisms become more diverse.
double-couple rotation. GJI. - - The increased diversity could be due to stress perturbations from the mainshock and/or a
- Alvarez Gémez (2019). ‘CU’ — After Mainshock fault strength reduction caused by the mainshock.
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N - Maximum principal stress at Gofar is ~45° from strike, differ from that of the San Andreas
Acknowledgements e _ -~ fault (.~80°), indicating Gofgr Is generally stronger than Sgn Andreas faglt.
g) 50 ‘~~____ - Barrier zones are mechanically weak segments, creeping and bounding rupture zones,
This work was funded by: Y K% - mirroring continental strike slip faults, such as San Andreas fault.
- NSERC postdoctoral ' E 40- - Both extension and compression occur at seismogenic depths throughout the transform
fellowships 587558-2024 < . . , , , , , fault zone, with a prevalence of oblique normal events, implying that the system is not
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