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1. Estimating paleo-earthquake magnitudes

Histogram of Pseudotachylyte Vein Thicknesses

Energy needed to melt the Asbestos Mtn. tonalite 5 km
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20! Palm Desert
The Guadalupe Canyon locality exposes a quasi continuous North

array of pseudotachylyte veins, bearing the same attitude,
ranging in thickness from 1 to 20 cm.

The variations in thickness of the vein along strike are due to
the existence of restraining and releasing bends. We also -
acknowledge that a small percentage of frictional meltis
lost in the form of injection veins and thus the estimated 5 ling
volume is a slight underestimate. The average thickness of TH D =
these veins was estimated at 80 locations (where the width 5 25 50 75 100 25 10 5 200 Ry, Quinta
was measured over a distance of ~1 m) to 5 cm photo B and Peeudotachylyte Vein Thickness n @R

diagram). To melt the Asbestos Mtn. tonalite and produce a 5 cm-thick layer of frictional melt (i.e., a Oy%/h/
volume v =0.05 m3), we need the thermal energy to melt a mass m of tonalite. Considering the tonalite FQ“—/\ 9/7761‘/[@
density r ~2,730 kg/m3, and the volume of melt produced v = 0.05 m3, this amounts to melting a mass

m =r.v=136.5 kg of tonalite per 1 m? of fault surface.
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The sampling localities are ~5 km to the West
of the La Quinta PGA golf course. Oriented
samples for anisotropy of magnetic
susceptibility (AMS) were collected from fresh
exposures of generation veins (Fig. B above),
away from injection veins to avoid local flow

S

Melting heat calculations

The total heat Q; needed to melt this mass of tonalite is the sum of the heat needed to warm up the
tonalite from pre-seismic ambient temperature Q; plus the heat to completely melt the solid rock up to
the liquidus, Q,, (assuming congruent melting).

Q=Q;+Q,,

The AMS fabric of 197 minicubes from 10
samples has been measured. Most
samples show a clustering of K5 axes
(blue) indicative of strong planar fabric /

The tonalite mass-specific heat capacity C, is calculated from the major element oxide composition complication. g%nzt;)gegr‘\ez(;l;s \r/]lscogs Straln.dllr; CE)(ntrast,
(Wenk et al., 2000) using published values of heat capacity for each oxide (Robie et al., 1978), at 1 kbar distribution. A Str:)W ISpeIrse :c 3 a1):(es
pressure (~3.5 km depth), and a water content of 4.49% (Eves, 2023). ISTriou an. s the Sarnp es are ree o
C. =924 ) kg K- Slabs (3.5 mm thick) were cut post-cooling deformation, the dispersion
P along the horizontal plane and reflects heterogenous strain. The K,
To raise the tonalite temperature from ambient cubes were cut from these slabs girdies ?re Ccl).nS|sten’: b?ttr\:l/e?r? s;rr;tple_s
preseismic temperature of ~100°C, at 3.5 km depth (Wenk et al., 2000) to its melting temperature of along NS and EW vertical S:JggesTlrr:gAal\l/lgSnmen Wlt |n. © a Ienlng
1200°C requires directions. The mini-cubes (3.5  Fiiia e ey | V= plfln(:. © i sy:crltme y lts ll;naln y
mm) are measured using e A Saee B W < obfate, suggesting Tlow'in a tabtiar
Q,=C,-AT=924x1100=1,016,400J kg™ ~ 1.02 MJ kg’ custom-made diamagnetic e S AR & | 2 & s STMENL EID ClEEer va_rla_tlons _(yeIIow
acrylic holders in a Kappabridge Lqitedbes o < TEE T and N e S e e arrows) show reflect variations in flow
However, C, is temperature-dependent so integrating Q, over the 100-1200°C range yields KLY-5S susceptometer. V ; | : onicityjdiiciofieicdalidldnsiiestialiing
bends along the fault.
Q, = [373/1%73(854 + 0.2349 T) AT =1.178 MJ kg The AMS measurements yield h
the magnetic foliation (K;-K, Nort
In addition to this heat, the composition-weighed heat of fusion Q,, for the tonalite needs to be plane), magnetic lineation (K, The lower-hemisphere stereographic plot shows earthquake
considered, axis), magnetic susceptibility focal mechanism determined from all 10 samples and their
(K,,), degree of magnetic AMS fabrics.
Q,,, =368 kJ kg anisotropy (P’) and shape
parameter (T) (Jelinek, 1981). This data indicates a reverse faulting mechanism along a
Frictional heating from 100 to 1200°C and melting of the tonalite requires a total energy of N233.5°, 36° direction.
Q;=Q +Q,= 1,178,000 + 368,000 Jkg'= 1.546 MJkg"
| | | | o Conclusion e
Melting the 136.5 kg mass of tonalite requires the thermal energy The predicted AMS foliation and Ks» m:;’r']‘;tlg
Q.=Q;.m~211.10%J)~211 MJ lineation follow Jetfery (1.922)’8 folation K, The mini-AMS proves to be a powerful method to -
model and are oblique with investigate paleoseismic events that produced frictional '
Colnsidering the percentage of clasts in the veins (~5%), this reduces Q. by 5%, hence a more realistic respect to shear plane. melts (pseudotachylytes).
value is
Qe’~200. 10%)J (a value higher by ~15% compared to Wenk et al. 2000’s due to a cooler host rock and Therefore, the magnetic
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|| Seismic Wave Radiation

E~212.108) / m?2 O_’ D
N,

Considering an average tonalite with strengtht =156 MPa (e.g., Perkins et al., 1970), ignoring any

l:l Mechanical Wear
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