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3KIT, 4USC• Dynamic rupture simulations link fault friction, off-fault 

damage, and seismic radiation  
• Damage rheology governs rupture cascades and 

triggering delay times (Niu et al., JGR in press) 
• Requires integrated 3D modeling, inversion and 

uncertainty quantification 

Figure 1: Delayed dynamic triggering across fault segments due to off-fault damage. (a) Shear modulus reduction distribution at 7.5 km depth, 35 s after rupture initiation, showing 
localized off-fault damage extending between faults F1 and F2. The white star shows the hypocenter of delayed triggered rupture on F2. (b) Close-up view of shear modulus 
distribution near the two faults, indicating the location of a receiver (cyan triangle) at (12.5, -3.0, -7.5) km. (c) Time series comparing shear traction (solid curve), static (dashed curve) 
and dynamic (dash-dotted curve) frictional shear strength at the receiver location indicated in (b) The black-dashed arrow marks the initiation of spontaneous rupture on fault F2. (d) 
Spatial distribution of shear traction on both faults at 35 s, with the hypocenter on F2 marked by a white star. (e) Slip rate distribution at 40 s while fault F2 is dynamically delayed-
triggered. (f) Variation in delay time between rupture initiation on fault F1complete rupture of fault F1 and the initiation on fault F2 as a function of the nonlinear modulus γr and 
damage evolution coefficient Cd in the CDB model. Each marker represents delay times from an independent simulation. We show simulations with varying γr and Cd in (f). 

Motivation

↑Figure 4: Data and model setup for the 3D dynamic rupture inversion. (a) Map view of 
the GNSS and seismic stations used to constrain the inversion, located within 100 km 
of the Mw 7.1 Ridgecrest mainshock epicenter (red star). The fault trace (F1) of the 
main fault segment that ruptured during the 2019 Mw 7.1 Ridgecrest mainshock is 
shown as a solid red line, thinner black lines mark the secondary segment ruptured 
during the mainshock (F2), the subparallel fault (F3) where the Mw 6.4 foreshock 
nucleates (pink star), and the conjugate fault (F4) that hosted the foreshock and re-
ruptured during the mainshock. The 3D fault structure is shown in Fig. S2. Pink squares 
indicate GNSS stations with high-rate displacement time series, and orange squares 
mark GNSS stations used for static co-seismic displacements. Blue triangles denote 
locations of strong-motion seismic stations used to validate the inversion.

Scalable Bayesian Inference via Asynchronous Prefetching 
Multilevel Delayed Acceptance (MLDA)
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First Bayesian inversion using complex 3D dynamic rupture simulations with off-fault plasticity

•  Multilevel delayed acceptance (MLDA) Bayesian inversion (Kruse 
et al., PASC 2025), reducing the number of costly simulations 
needed for uncertainty quantification by combining fast 
approximate coarse models with fewer fully resolved simulations

↑Figure 2: Overview of the Multilevel 
Delayed Acceptance MCMC (MLDA) 
algorithm and its target application, the 2019 
Ridgecrest earthquake. (a) Surface 
displacement data during the earthquake. (b) 
Visualization of the simulated earthquake 
source and the generated seismic wave field. 
(c) Structure of the proposed MLDA model 
hierarchy. (d) Modeled plastic deformation, 
which is controlled by physical parameters, 
the target of the inference in this work.

←Figure 3: 
Computational setup 
consisting of UQ client, 
cluster-side load 
balancer, adaptive 
surrogate model and 
parallel simulation 
instances.

↑Figure 4: Traversal of node probabilities 
through an exemplary Markov tree. Green color 
indicates finished posterior evaluation, orange 
indicates computations in progress. The most 
likely candidate, selected for the next posterior 
evaluation, is encircled in red.

•  Joint inversion of on- and off-fault nonlinear dynamic rupture parameters  
•  Using fault-parallel surface offsets from satellite imagery, high-rate GNSS time series, static GNSS displacements  
•  Quantify uncertainties and correlations among on- and off-fault dynamic rupture parameters  
•  Using 4 million CPU hours
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Conclusions
• Strong correlation between on-fault frictional weakening and off-fault plasticity 
• Increased inelastic deformation trades off with stronger velocity-weakening frictional behavior  
• Along-strike changes in fault maturity: Preferred rupture models have increasing (a-b) from northwest 

to southeast, reducing velocity-weakening effects  
• Shallow damage zone: lower off-fault plastic cohesion enhances the match to observed surface 

deformation; shallow slip deficit (SSD) of 13.1% ±5.1%,  
• Integrating 3D dynamic rupture simulations and multilevel Bayesian inversion is feasible to rigorously 

characterize on- and off-fault earthquake physics and quantify uncertainties in dynamic parameters
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Figure 8: Snapshots of fault slip rate distribution during the Searles Valley 
foreshock and the Ridgecrest mainshock in the reference dynamic rupture model 
from Taufiqurrahman et al. (2023), Schliwa et al. (2025).

↑Figure 5: Fault-parallel offsets 
from model parameterizations with 
high posterior probability density. 

↓Figure 7: Uncertainties in fault slip distribution among 
all models in the MLDA chains. Panels (a) and (b) show, 
respectively, the mean and the standard deviation of 
fault slip. (c) Histogram of shallow slip deficits (SSDs) 
across all models. (d) Variation of fault slip with depth.

→Figure 6: Co-seismic 
horizontal static 

displacements at 21 
GNSS stations. 
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