
Introduction Results
Traditional ground motion models (GMMs) use proxies like VS30 (Borcherdt,
1994) and depths to shear-wave velocity isosurfaces (z1.0 and z2.5) to represent
site effects (e.g., Boore et al., 2014; BSSA14). While effective for ergodic
modeling, these proxies often fail to capture site-specific geological
complexities, contributing to epistemic uncertainty in seismic hazard
assessments.

This study explores the use of parameters derived from microtremor-based
horizontal-to-vertical spectral ratio (mHVSR) curves—such as the predominant
frequency (f₀), amplitude (a₀), and full spectral shape—in combination with
traditional site parameters (i.e., VS30) to evaluate which parameters have the
strongest predictive power for site amplification. Figure 1 presents an example
of a peak in a mHVSR curve which is fit with a Gaussian pulse function (Wang
et al., 2022; Buckreis et al., 2024) using an algorithm developed by Wang et al.
(2023). While the pulse fit enables the extraction of various features, this study
focuses on two key parameters—f₀ and a₀—which have previously been found
to be related to site response characteristics (e.g., Kwak et al. 2017; Wang et al.
2022; Buckreis et al., 2024).

We employ a random forest (RF) regression model using data from 685 sites
across California to evaluate the performance of various proxy combinations in
predicting linear site response (Flin). This work builds upon a previous study that
focused exclusively on the use of the mHVSR spectral shape as a predictor
variable (Ornelas et al., 2026). Our results indicate that the incorporation of
mHVSR-derived features significantly improves predictive accuracy and reduces
epistemic uncertainty compared to the benchmark site amplification model
(Seyhan and Stewart, 2014; SS14). These findings underscore the value of
various proxy combinations in enhancing site response predictions across
California and provide insight into the specific features that influence key
aspects of site response, such as resonance. However, further research is
needed to understand the underlying mechanisms of this RF model, particularly
how it is making predictions, before it can be applied in practical applications.
Nonetheless, the results offer valuable insights into the potential advantages of
incorporating mHVSR parameters into future site response models..
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Figure 2: Location of mHVSR tests co-located with strong motion sensors.

• Site response computed from site terms derived from mixed-effects regression
and linear component (Flin) of the BSSA14 (i.e., SS14) ergodic model.

• Random forest (RF) model trained on 80 % of site response and input data.
The other 20 % was used for model validation.

• Figure 3 shows correlations between input and output variables using
Pearson’s r, indicating a strong correlation between mHVSR and site response
at low frequencies, negative correlation with VS30 (i.e., increasing VS30 causes
decreased site response), positive correlations with z1.0, z2.5, and weaker
correlations for slope, terrain, f₀, a₀ and geologic units.

• Figures 4 and 6 present overall model performance and Figure 5 provides
example results

Figure 4: Comparison of model performance for different input parameter combinations.
(a) Coefficient-of-Determination (R2) (b) Mean Squared Error (MSE). Proxy in the legend
indicates a combination of slope, geologic unit and terrain class. Results show improved
model performance (higher R2 and lower MSE) for models that include the f₀, a₀, VS30, z1.0,
and z2.5 parameters relative to models that use only VS30-based models such as SS14.

Figure 6: Comparison of model performance using SS14 VS30-based model and RF model
that incorporates f₀, a₀, VS30, z1.0, and z2.5 : (a) Within-event residuals in natural log units, (b)
Site-to-site variability. The results indicate a reduction in variability, with residuals more
tightly clustered.

Figure 3: Comparison between soil-based (e.g., VS30) and mHVSR-related
proxies (e.g., f0) using Pearson’s r to evaluate correlation. The frequency labels
on the left plot are related to the ordinate position relative to frequency.

mHVSR Data
• From VSPDB (~1,400 sites; Kwak et al., 2021; https://vspdb.org)
• Broadband seismometers only (permanent and temporary)
• Derived from ambient noise  which can be natural or human induced sources
• Processed per Wang et al. (2022); Ornelas et al. (2024)

Ground Motion Data
• From GMDB (Buckreis et al., 2025): 62,506 records, 4,469 stations
• 2,453 stations retained after screening
• 685 stations co-located with mHVSR (≤150 m) – see Figure 2

Methodology and Database

Figure 1: Illustration of parameters extracted from a Gaussian pulse fit applied
to a mHVSR curve. These parameters can be used as input features for various
predictive models. In this study, two key features utilized were the peak
frequency (f₀) and the peak amplitude (a₀).

Figure 5: Comparison of site responses at four example sites and how different models
predict it. The green dashed line represents a RF model using 15 ordinates from a HVSR
mean curve to predict site response. The red dashed line represents a prediction from SS14.
The purple dashed line represents a RF model using a combination of scalar-proxies. The
results highlight scenarios in which one ML model outperforms the other, as well as cases
where both models demonstrate improved performance, depending on the input parameters.
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