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Fault-Fluid Interactions and Model Setup 

Heat
Fluid

Poro-thermal diffusive bulk

Ø A finite fault gouge model with poro-thermal diffusive bulk 
boundaries and the reformulated strain-rate-and-state law.

Figure 10: (a) Schematic of the spring–slider system, in which the fault gouge is sheared 
by a spring pulled at a constant tectonic slip rate, Vₚ.
(b) Finite fault gouge model under saturated conditions, incorporating fluid and heat 
exchange between the gouge and the surrounding bulk material.

1. Poroelastic effects regulate shear zone evolution by 
modulating pore pressure in the surrounding bulk, 
which is further diffused into the shear zone.

2. Fluid leak-off from the shear zone is crucial. Off-fault 
fluid leakage reduces rupture persistence and slip 
magnitude by draining fluid from the shear zone.

3. Shear strength estimates should use maximum pore 
pressure during coseismic (localizing) stages and 
average pore pressure during aseismic (delocalizing) 
stages.

4. The strain-rate–and–state friction law reproduces 
both localization and delocalization, with localization 
possible even during aseismic slip.

Figure 9: Hypothesis test result. h is the shear-zone width

Figure 4: Spectra with various undrained Poisson’s ratios and bulk permeabilities.

Figure 7: Slip rate versus time (the solid blue line). 
Respective temporal evolutions of characteristic pore 
pressure, maximal pore pressure, and average pore pressure 
within the shear zone.

Fault slip initiates in two extremely different scales: 
(1) Up to meters and kilometers in fault length scale.
(2) Down to a few millimeters across the shear zone.
Q1: How to bridge the two distinct scales when modelling?
Q2: What is the role of poroelasticity during the process?

Fundamental Problem: Challenge of the Effective Stress Principle: 
Which Pressure is Representative within the Shear Zone? 

Characteristic Pore Pressure by Definition: 

Permeable 
Bulk

Off-fault Leakage Matters:
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Strain-rate-based friction law :

Connecting strain rate with slip rate:

Coulomb's law in question:
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Slip-rate-based friction law:
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Characteristic pore pressure:

Ø Within one slice across the shear 
zone, we have a single pc value.

Figure 6:  (a) Pore pressure and (b) strain rate. 

Spectrums of Fluid Pressure in Bulk and Slip Rate: 

Attempts to Define Characteristic Pore Pressure:
Spatially varying fluid pressure.

Negative fluid pressure due to poroelasticity.

Average pressure 
becomes representative

Max pressure is 
representative

Migrating localized layer

Figure 1: Ruture (red patch) in kilometer and millimeter scales.

Figure 2: (a) Problem paradigm, (b) Localized strain rate, and (c) shear zone.

Figure 3: Model setup. The rupture is triggered by the initial pressure bump.

Spring slider coupled with finite fault gouge 

Vp

Figure 5: Comparison of spectrums with and without 
permeable bulks.

p=pa, T=Ta

Figure 8:  (a)-(d) Spatiotemporal spectrums of absolute error by different definitions of pc. (e) and (f) 
Slices taken from the dashed white line in the left panels.
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Hypothesis 1: Hypothesis 2:

Boundary p=pa and T=Ta, 
preventing boundary effects by 
migrating the localization zone.Clearly, neither pmax nor 

pavg represents pc… 

Figure 11: Slip rate/Friction versus time in earthquake cycles and respective evolution of 
strain rate.
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the strain rates along the gouge layer with the uniform distribution.
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Note: a constant shear stress is assumed 
across the fault gouge.


