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Motivation Morphed Mesh Quality
- Natural faults have complex, non-planar geometries with rough surfaces. * The reference mesh (6 = 60(_3) Is morphed to have a wide range of fault dip, - The mesh morphing method preserves mesh connectivity during morphing, which
- Fault geometries are challenging to constrain observationally, even if surface V\G; € [4r? r ?O r]n W?]”e m.eilhntalrlmrg];. acc(;gptabl? mfesh quality. o GMSH [ allows us to apply data-driven, non-intrusive reduced-order modeling >,
rupture expressions are observed. . Theegrﬁas c?isetangz beestv\\llvelenr?:uclzt \I/ré?ticlgsairr:grr?c?rp%re(c;jc};?\%ag:ﬁgrgfgc]jgmeshes is. « We construct reduced-order models (ROMSs) from dynamic rupture simulation output
- Earthquake dynamic rupture simulations rely on meshes that exactly conform to 140 - 150 m. with an RMS distance of 71 - 73 m using the interpolated Proper Orthogonal Decomposition (iPOD) approach 178919,
fault geometries. ! ' which has recently been applied in several geophysical applications !11:12.13],
° Assumed fau": eometries in models ShOUId incor orate uncertaint _ earavais == el ¢ The ROMS apprOXima’[e SimUIation Ou’[pu’[ and dare hlghly efﬁCient to evaluate,
o ; s : : p : Y : e PLITER HEPENGY permitting robust global sensitivity analysis with respect to varying geometries
« Quantifying model sensitivity to geometric variability remains challenging because: I gy = = : gg%e'v N ) '
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. The process of geometry model and mesh generation is time-consuming and AL Tl P A Reduced-Order Model for Vertical Surface Displacement u,
often non-automated. s e SR e A L4 | « ROM constructed using vertical surface displacement u, at a given timestep from
. The parameter space to be explored is high-dimensional. - “»’AN&QE%%@%?@ ’"45“%‘““ SeisSol simulations run on morphed meshes for 6 = [50°, 51°,...69°,70°].
: : : : : EN b wss VN OV « Leave-one-out cross-validation L, error is 0.03-0.06 m at edge of parameter space
I1l. Dynamic rupture simulations may be computationally expensive. A e e N VA . . L . !
y P y P y exp A A A“ﬁ‘?z&‘féﬁt \ Wf\& but within parameter interval it is < 0.01 m and typically < 0.005 m (or 0.1% of max u,).
:> reference mesh while preserving mesh connectivity, enabling reduced order | - 0 :> 5x10™%*s : Online cost (walltime) to evaluate ROM
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 Mesh morphing takes a mesh X,, representing a geometry G, and deforms (morphs)
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q = (0) with reference value 6;. _ | | | — YTE
I I I _ _ Figure 3. The reference mesh (6 = 60°) shown from a side on view (a) and angled view (b). The morphed mesh '
2. Assign boundaries or surfaces with 8 = 40° is shown in (c) and (d). Cells are colored by mesh quality based on the Aspect Ratio metric.
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6. Define an RBF |r?terpol_ant Table 1. Mesh quality metrics for the full mesh volume Figure 4. Ranges of aspect ratio values and the percent v -
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Figure 1. lllustration of the mesh morphing method. (a) The reference displacements D ;. » Velocity components recorded at off- T ;; """"" T 0011 2 “[\ | | 0- | | , 01 | i .
geometry, in black, as well as points X, which lie on T, in green, 10. Add displacements to obtain . ek 0] ———= 0] 3.15 x 10" s : Offline
and those which lie on I, in blue. (b) Thef new geometry, in black, as h z h X, =X. +D fault receivers agree strongly for Vy ~0.011 L“WWWW ~0.57 650 ] B0 R2 8883 dm.ﬂ'w\\{}\bpmrlwww\/\f\ﬂ\ 1.2¢-03 e o] 1.2¢03 cost (walltime) to
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Example: Varying Fault Dip

« We demonstrate the application of mesh morphing to the SCEC/USGS TPV13-3D morphed mesh (by O'_3 m/s), but for & = 50°. Generated mesh output in black, morphed 00051 \ '\ i /\\/ /\ 001 001 ROM_ (once bl.Jilt)
benchmark exercise [, with dynamic rupture simulations performed using SeisSol [3!. agrees well at other time steps. mesh output in orange, and RMSE values in blue. RIO 00001 4.7@-020“%‘“’"W\WW“/ MV v Vo5 W 5] 120 relative to SeisSol
—0.005 1_ . . . . . . . . . ‘ .
- TPV13 features spontaneous rupture on a 2D planar normal fault at 60° dip, with 00 25 50 15 00 25 50 75 00 25 50 75
EX&Ct Morphed Diﬂ‘erence COIltOUI'S Time (s) Time (s) Time (s)

Figure 5. Velocity components at 5 off-fault receivers
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supershear rupture, linear slip-weakening friction, and off-fault plasticity governed
by a non-associative Drucker-Prager visco-plastic rheology.

Figure 9. Velocity components at 5 off-fault receivers for 8 = 54°, with morphed mesh velocity in black, the ROM
approximation in blue, and generated mesh velocity as orange points; RMSE between morphed mesh velocity and ROM
2 approximation in dark blue text, and RMSE between generated mesh velocity and ROM approximation in orange text.
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« The reference mesh is generated using GMSH 41,
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:> We morph the mesh to have fault dip angles between [40°, 80°] and we decrease i v I e e W P Summary

the nucleation patch static friction coefficient from 0.54 to 0.48 to allow rupture on , W hod f _ N f ol _ "
faults with dips in the range [50°, 70°]. ) e present a method for generating ensembles of geometrically varying meshes.
= « We apply this method to meshes for 3D earthquake dynamic rupture simulations.
(a) ) e « We demonstrate using mesh morphing enabled reduced-order models to quantify the
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] s, = s = g0 o ok tegsl (o gp SpedAS ), t 2.0,  gierenee LG 04 sensitivity of eartr_\quake rupture to geometric variability by measuring the variation in
s m— — vertical surface displacement as fault dip varies.
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< g Outlook for complex fault systems: arxXiv
H— = b , '  Fault networks with stepovers, branches, and/or intersecting faults. Preprint available
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— S— e parameters of interest.
= . « Morphing non-intersecting faults is tractable; morphing intersecting
E . faults is challenging, likely requiring successive morphs and limited
S, outersurfaces | — geometric variation especially near intersections.
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