A data-driven, multi-scale sediment velocity model for Southern California
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1. Abstract 4. Training 5. Application

We present a non-parametric, data-driven near-surface velocity model for Southern We fitted the GP model using the training set and optimized the marginal We selected six representative geological cross sections within the Los Angeles Basin
California that can be used to populate the basin structures of SCEC CVM-S4.26. The model likelihood function to obtain the optimal model hyperparameters. as study areas for our model.

is developed as a conditional random field of the residuals relative to SCEC CVM-S4.26
expressed as a Gaussian process (GP). The GP kernel function is a composite of a
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patially varying Figure 4: Model performance in test datasets. variability of shallow geological structures, and the predicted results show good

ko (x,x") = Kymatren(%,¥) X kmatern () adaptability and reasonableness in different geological environments.
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