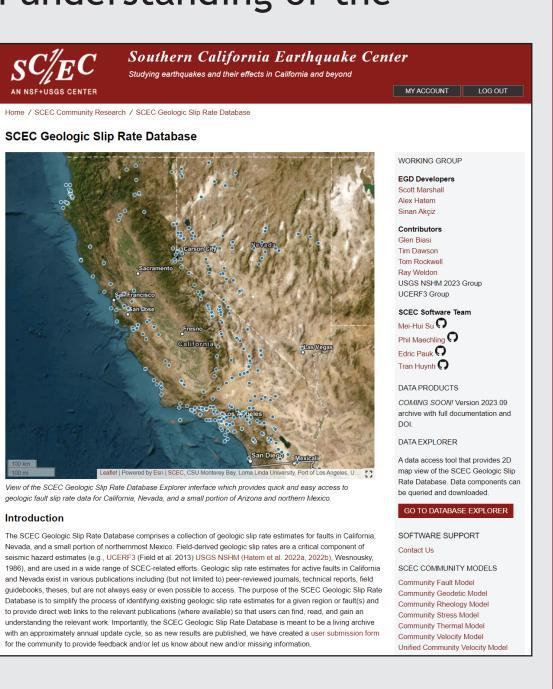
Updates to the SCEC Geologic Slip Rate Database (GSRD)

Sally McGill¹, Alex Hatem², Scott T. Marshall³, Miranda Owen¹, Maria Mendoza Gutierrez¹, Brock Gedik¹, Mei-Hui Su⁴, Philip J. Maechling⁴

Visit the Geologic Slip Rate Database Homepage!

¹Cal State San Bernardino, San Bernardino, CA; ²USGS, Golden, CO; ³Appalachian State University, Boone, NC; ⁴University of Southern California, Los Angeles, CA.

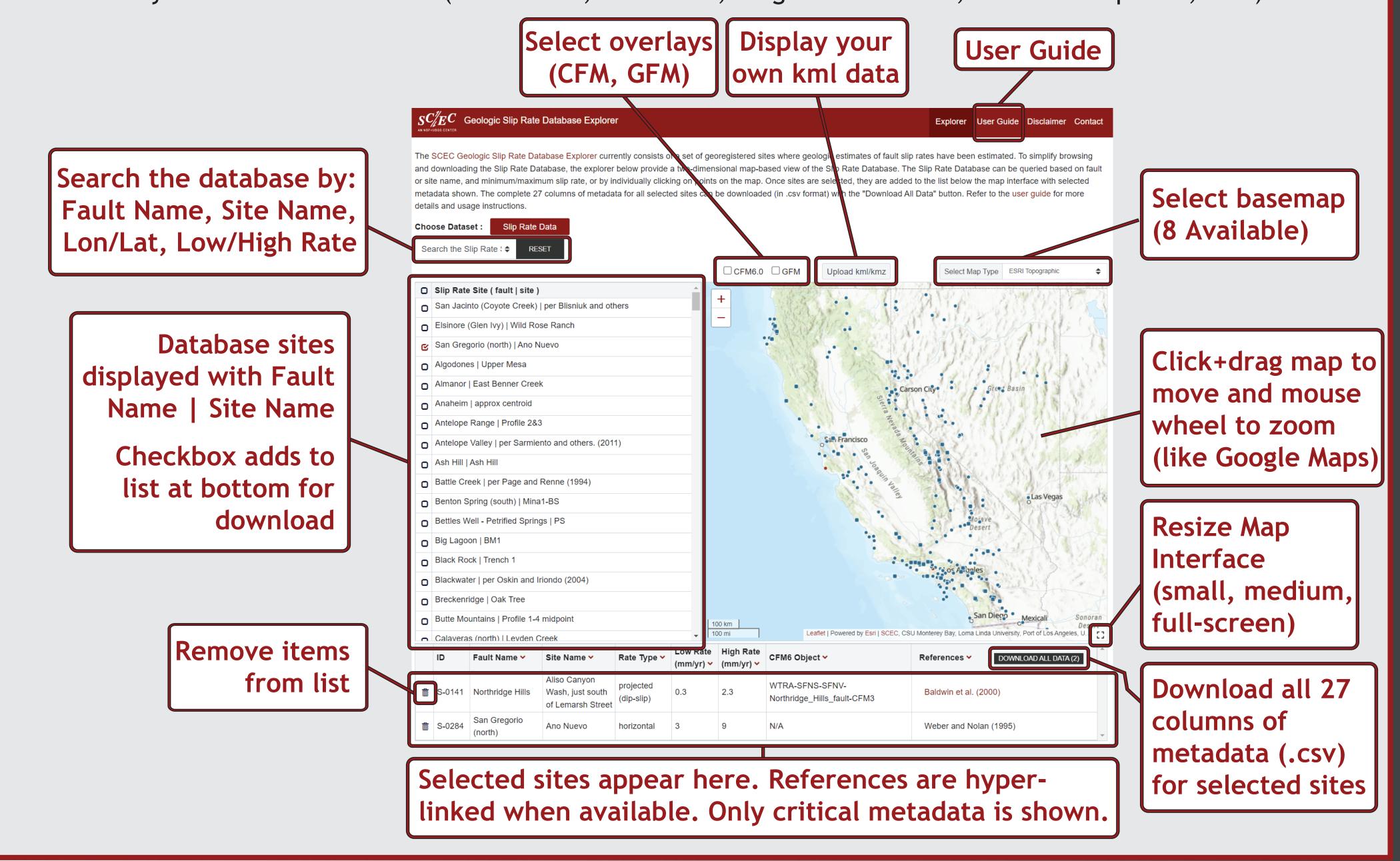
1: UPDATES TO THE SCEC GEOLOGIC SLIP RATE DATABASE


The SCEC Geologic Slip Rate Database comprises a collection of published, peer-reviewed geologic slip rate estimates for faults in California, Nevada, and a small portion of northernmost Mexico. The first version of the SCEC Geologic Slip Rate Database (GSRD) was released in summer 2023 and consisted of spatially registered geologic fault slip rate estimates from previously published databases, with most entries dated prior to 2021. Here, we report on work in progress to update the GSRD, incuding searches for new slip-rate studies since 2020 on faults in California and Nevada that have been active in the Quaternary. To date literature searches have been completed for over 134 of the 620 fault sections in the USGS Quaternary fault-sections database. So far, 21 new slip-rate estimates on 13 fault sections have been discovered, and we expect to discover many more. Once the literature review and vetting of new additions to the database is complete, we plan to release version 2 of the GSRD complete with a citable doi through Zenodo.org.

Field-derived geologic slip rates are a critical component of seismic hazard estimates (e.g., UCERF3 (Field et al. 2013; Dawson and Weldon, 2013), USGS National Seismic Hazard Model (Petersen et al., 2023; Hatem et al. 2022a, 2022b), Wesnousky, 1986), and are used in a wide range of SCEC-related efforts. Geologic slip rate estimates exist in various publications but are not always easy or even possible to access. The purpose of the SCEC Geologic Slip Rate Database is to simplify the process of identifying existing geologic slip rate estimates for a given region or fault(s) and to provide direct web links to the relevant publications (where available) so that users can find, read, and gain an understanding of the relevant work.

The GSRD is hosted with the SCEC Community Earth Models, and an algorithm cross-references GSRD slip rate sites to the appropriate SCEC Community Fault Model object. The GSRD interface provides web-based tools for users to quickly query, download, and visualize the existing slip rate data. The web tools also allow users direct web links to the GSRD references and the ability to upload their own spatial data (in .kml/.kmz format) to compare directly in the viewer with the GSRD. To keep the GSRD up to date when new data are published, the GSRD homepage provides a user-submission tool for users to notify the GSRD maintainers of new/missing slip rate data.

THE GEOLOGIC SLIP RATE DATABASE HOMEPAGE https://www.scec.org/research/gsrd


THE GEOLOGIC SLIP RATE DATABASE EXPLORER https://central.scec.org/research/gsrd-explorer/

Screenshot of the SCEC Geologic Slip Rate Database homepage

3A: THE GEOLOGIC SLIP RATE DATABASE EXPLORER

To facilitate broad usage, the SCEC Geologic Slip Rate Database Explorer was created with the first relase. This is a web-based tool that allows users to easily view, query, and download the Geologic Slip Rate Database. This web-tool allows users to visualize geologic slip rate sites in a 2D map-based view. Users can search the database by several useful metrics (fault name, site name, longitude/latitude, min/max slip rate, etc.).

Do you have a geologic slip-rate study published after 2020? Email the reference to smcgill@csusb.edu, or use the submisson tool at https://www.scec.org/research/gsrd

2: PRELIMINARY LIST OF NEW ADDITIONS TO THE GSRD

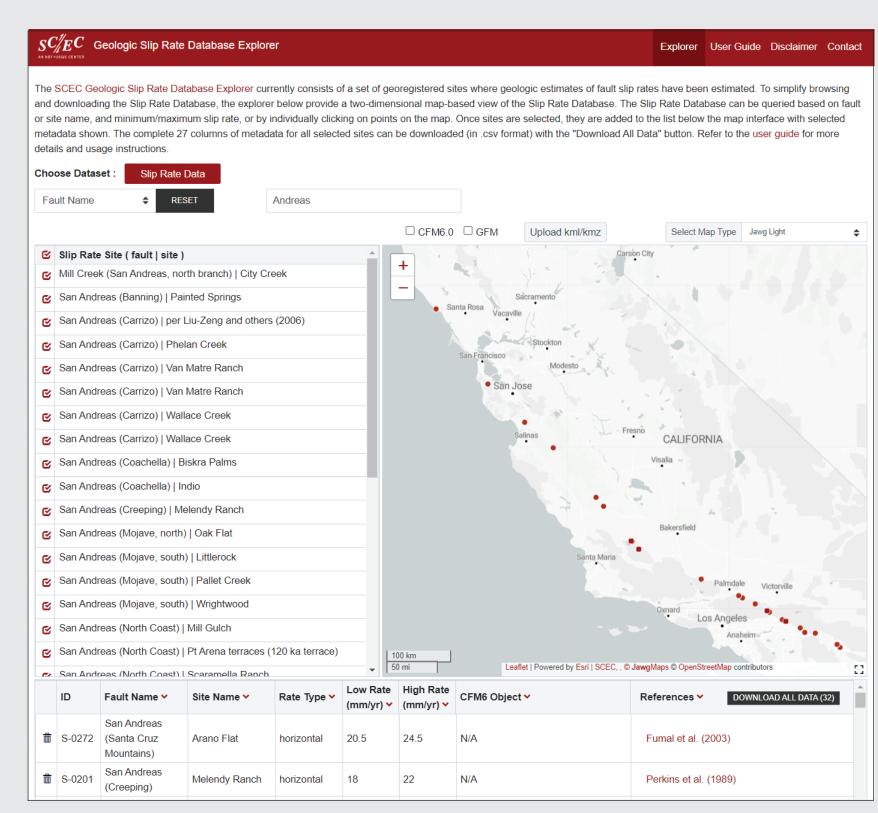
(incomplete and not fully vetted yet; not all columns are shown)

			Λ	Prete	_			A		4	
	04-4-	Oita Nama			Low		Office of Towns	Assa Tours	Num	Data Asia (Isa)	Object Defended
Fault Name	State	Site Name	Observation	Rate	Rate	Rate Rate Type	Offset Type	Age Type	Events	Rate Age (ka)	Short Reference
		north of Karlsson	site 10 km north of Karlsson et al.'s (2021) paleseismic trenches. Karlsson et al. (2021) use optically stimulated					lumin accorded and			
Concede Devid		et al. (2021)	luminescence ages from sediments in the trenches that were collected from below a buried soil they interpret to be					luminescence and			
Canada David		paleoseismic	correlative with Q5, to estimate a minimum dip-slip rate of ~1.4 mm/yr. The rate is a minimum because additional					SOII			
detachment	Baja, MX	trenches	faulting is distributed across a 2.4-km-wide zone (Serna-Hernandez, 2020).		1.4	dip-slip	alluvial surface	chronosequence	3	~8	Karlsson et al. (2021
		Q4 (SE end of	11-20 m vertical separation of Q4 deposits with an age of 5 +/- 3 ka (based on soil development) yields a average								
		Segment A in	vertical displacement rate of 3 mm/yr. Range is 1.4 to 10 mm/yr, but the upper end of the range is unlikely given			unprojected		soil			Mueller and Rockwel
Laguna Salada	Baja, MX	Figure 2)	the ages of other surfaces.	3	1.4	10 (vertical)	alluvial surface	chronosequence	~3	5 +/- 2	(1995)
		Segment A in	> 20 m vertical separation of Q4+ surfaces, wtih an inferred soil age of 10 +/- 2 ka yield vertical displacment rate of			unprojected		soil			Mueller and Rockwell
Laguna Salada	Baja, MX	Figure 2)	~1.7-2.5 mm/yr.		1.7	2.5 (vertical)	alluvial surface	chronosequence	~5	10 +/- 2	(1995)
		Segment A in	A slip rate of 0.7 - 2.3 mm/yr is reported for alluvial surface Q5, based on up to 35 m vertical separation of Q5			unprojected		soil			Mueller and Rockwell
Laguna Salada	 Baia MX	Figure 2)	surfaces, with inferred soil age of 15-50 ka.		0.7	2.3 (vertical)	alluvial surface	chronosequence	unlisted		(1995)
	Daja, Wix	i iguic 2)	Surfaces, with interred sen age of 10 00 kg.		0.7	Z.0 (Vortioar)		omonosequence	diffiction	10 00	(1000)
		Q4, Q4+, Q5	A right-lateral slip rate of 2-3 mm/yr is estimated from the 2-3 mm/yr vertical displacement rate, assuming a 1:1					soil		5 +/- 2, 10 +/-	Mueller and Rockwell
Laguna Salada	Baia. MX	combined	ratio of strike-slip to vertical displacement rates, as was observed in the most recent earthquake, in 1892.	2-3		right-lateral	alluvial surface	chronosequence		2, and 15-50	
	, ,							·			
EL: (0								U-series dating on		60-70 and	
Elsinore (Coyote	.		U-series dating of pedogenic carbonate on offset alluvial fans Q6jk (60-70 ka) yields a right-lateral slip rate of 2.4					pedogenic		probably back	
Mountains)	CA	Coyote Mountains	+- 0.4 mm/yr. The slip rate for older, Q7, fans is similar or possibly faster, depending on the age model used.	2.4	2.0	2.8 right-lateral	alluvial fans	carbonate	unlisted		Rockwell et al. (2019)
Earthquake Valley			$^{\prime}$								Akciz and Rockwell
(center)	CA	Warner Basin	Offset of two main drainages that cut into the sedimentary fill of Warner basin		1.95 +/-	- 0.4 right lateral	offset drainages	C14?	3	~2	(2022)
			$^{\prime}$				contact between				
			$^{\prime}$				stratigraphic units				
Brawley	CA	Harris Road	Vertical offsets measured in stratigraphic exposures.	2.8	1.4	6.9 vertical	95 and 100	C14		0.817-0.964	Meltzner et al. (2006)
			Three buried channel deposits exposed in 3-D trenching are offset from the same source with increasing offset								,
			with age. A slip rate of 1-1.5 mm/yr was measured on one fault strand, and a parallel fault strand with similar				buried channels			10.6, 14.7 and	
Whittier	CA	Olinda oil field		2.5-3	1_1 5	right-lateral	offset from source	C14		1	Gath et al. (2017)
2.000000			grandpart and an area are are are are are are are are ar			- July and the second of the s					
			$^{\prime}$								
San Andreas			Alluvial fan (Qf3b) offset 13-17 m right-laterally and 1.8 to 2.1 m vertically across three strands of the fault								
(Banning)	CA	Washington Street	. combined.	2.5	1.5	3.5 right-lateral	alluvial fan	10Be depth profile		6.1 +2.2/-2.0	Blisniuk et al. (2021)
San Andreas			Alluvial fan (Qf3b) offset 13-17 m right-laterally and 1.8 to 2.1 m vertically across three strands of the fault			vertical (NE-					
	CA	Washington Street		0.3	0.2	0.5 up)	alluvial fan	10Be depth profile		61+22/20	Blisniuk et al. (2021)
(Banning)	CA	washington Street	Combined.	0.3	0.2	0.5 up)		Tobe depth profile		0.1 +2.2/-2.0	Diisiliuk et al. (2021)
								A		4	
			Alluvial fan deposits of six different ages have been dated and correlated across the fault. The slip rate prior to 71					10Be exposure	1		
Blue Cut	CA	Hexie Mountains	Alluvial fan deposits of six different ages have been dated and correlated across the fault. The slip rate prior to 71 ka appears to be faster than after that date.	2.93	0.95	9.07 left-lateral	alluvial fans	10Be exposure dating		0-71	Guns et al. (2022)
Blue Cut	CA	Hexie Mountains	ka appears to be faster than after that date.		0.95	9.07 left-lateral	alluvial fans	dating		0-71	Guns et al. (2022)
			ka appears to be faster than after that date. Alluvial fan deposits of six different ages have been dated and correlated across the fault. The slip rate after 71 ka					dating 10Be exposure			
Blue Cut	CA CA	Hexie Mountains Hexie Mountains	ka appears to be faster than after that date.				alluvial fans	dating		71-121	Guns et al. (2022)
Blue Cut San Gorgonio	CA	Hexie Mountains	ka appears to be faster than after that date. Alluvial fan deposits of six different ages have been dated and correlated across the fault. The slip rate after 71 ka appears to be slower than prior to that date.	0.66	0.46	0.86 left-lateral	alluvial fans	dating 10Be exposure dating		71-121	Guns et al. (2022) Heermance et al.
Blue Cut San Gorgonio			ka appears to be faster than after that date. Alluvial fan deposits of six different ages have been dated and correlated across the fault. The slip rate after 71 ka appears to be slower than prior to that date. Alluvial fan terrace offsets summed over two fault strands		0.46		alluvial fans	dating 10Be exposure dating 10B and C14		71-121	Guns et al. (2022)
Blue Cut Blue Cut San Gorgonio Pass	CA	Hexie Mountains Millard Canyon	ka appears to be faster than after that date. Alluvial fan deposits of six different ages have been dated and correlated across the fault. The slip rate after 71 ka appears to be slower than prior to that date. Alluvial fan terrace offsets summed over two fault strands The Three Palms fan is offset approximately 57 +/- 3 meters. U-series dating on pedogenic carbonate rinds	0.66	0.46	0.86 left-lateral	alluvial fans alluvial fan terraces	dating 10Be exposure dating 10B and C14 U-series dating on		71-121	Guns et al. (2022) Heermance et al.
Blue Cut San Gorgonio Pass	CA	Hexie Mountains	ka appears to be faster than after that date. Alluvial fan deposits of six different ages have been dated and correlated across the fault. The slip rate after 71 ka appears to be slower than prior to that date. Alluvial fan terrace offsets summed over two fault strands The Three Palms fan is offset approximately 57 +/- 3 meters. U-series dating on pedogenic carbonate rinds collected at 25-100 cm depth within the fan deposit constrain the minimum depositional age to 3.49 +/- 0.92 ka,	0.66	0.46 4.5	0.86 left-lateral 8.3 oblique	alluvial fans alluvial fan terraces Three Palms	dating 10Be exposure dating 10B and C14		71-121 8.6 >= 3.49 +/-	Guns et al. (2022) Heermance et al. (2023)
Blue Cut San Gorgonio Pass	CA	Hexie Mountains Millard Canyon	ka appears to be faster than after that date. Alluvial fan deposits of six different ages have been dated and correlated across the fault. The slip rate after 71 ka appears to be slower than prior to that date. Alluvial fan terrace offsets summed over two fault strands The Three Palms fan is offset approximately 57 +/- 3 meters. U-series dating on pedogenic carbonate rinds	0.66	0.46 4.5	0.86 left-lateral	alluvial fans alluvial fan terraces	dating 10Be exposure dating 10B and C14 U-series dating on		71-121 8.6 >= 3.49 +/-	Guns et al. (2022) Heermance et al.
Blue Cut San Gorgonio	CA	Hexie Mountains Millard Canyon Three Palms	ka appears to be faster than after that date. Alluvial fan deposits of six different ages have been dated and correlated across the fault. The slip rate after 71 ka appears to be slower than prior to that date. Alluvial fan terrace offsets summed over two fault strands The Three Palms fan is offset approximately 57 +/- 3 meters. U-series dating on pedogenic carbonate rinds collected at 25-100 cm depth within the fan deposit constrain the minimum depositional age to 3.49 +/- 0.92 ka,	5.7	0.46 4.5	0.86 left-lateral 8.3 oblique	alluvial fans alluvial fan terraces Three Palms	dating 10Be exposure dating 10B and C14 U-series dating on pedogenic		71-121 8.6 >= 3.49 +/-	Guns et al. (2022) Heermance et al. (2023)
Blue Cut San Gorgonio Pass	CA	Hexie Mountains Millard Canyon Three Palms	ka appears to be faster than after that date. Alluvial fan deposits of six different ages have been dated and correlated across the fault. The slip rate after 71 ka appears to be slower than prior to that date. Alluvial fan terrace offsets summed over two fault strands The Three Palms fan is offset approximately 57 +/- 3 meters. U-series dating on pedogenic carbonate rinds collected at 25-100 cm depth within the fan deposit constrain the minimum depositional age to 3.49 +/- 0.92 ka, yielding a maximum slip rate of 16 +6.1/-3.8 mm/yr	5.7	0.46 4.5	0.86 left-lateral 8.3 oblique	alluvial fans alluvial fan terraces Three Palms	dating 10Be exposure dating 10B and C14 U-series dating on pedogenic		71-121 8.6 >= 3.49 +/-	Guns et al. (2022) Heermance et al. (2023)
Blue Cut San Gorgonio Pass	CA	Hexie Mountains Millard Canyon Three Palms (Indio Hills)	ka appears to be faster than after that date. Alluvial fan deposits of six different ages have been dated and correlated across the fault. The slip rate after 71 ka appears to be slower than prior to that date. Alluvial fan terrace offsets summed over two fault strands The Three Palms fan is offset approximately 57 +/- 3 meters. U-series dating on pedogenic carbonate rinds collected at 25-100 cm depth within the fan deposit constrain the minimum depositional age to 3.49 +/- 0.92 ka, yielding a maximum slip rate of 16 +6.1/-3.8 mm/yr The proposed 640 +/- 80 m right-lateral offset of "fan 3" is not clearly explained or documented. The dated sample	5.7	0.46 4.5	0.86 left-lateral 8.3 oblique	alluvial fans alluvial fan terraces Three Palms	dating 10Be exposure dating 10B and C14 U-series dating on pedogenic		71-121 8.6 >= 3.49 +/- 0.92	Guns et al. (2022) Heermance et al. (2023) Munoz et al. (2016)
Blue Cut San Gorgonio Pass Mission Creek	CA	Hexie Mountains Millard Canyon Three Palms (Indio Hills)	Alluvial fan deposits of six different ages have been dated and correlated across the fault. The slip rate after 71 ka appears to be slower than prior to that date. Alluvial fan terrace offsets summed over two fault strands The Three Palms fan is offset approximately 57 +/- 3 meters. U-series dating on pedogenic carbonate rinds collected at 25-100 cm depth within the fan deposit constrain the minimum depositional age to 3.49 +/- 0.92 ka, yielding a maximum slip rate of 16 +6.1/-3.8 mm/yr The proposed 640 +/- 80 m right-lateral offset of "fan 3" is not clearly explained or documented. The dated sample used to calculate the slip rate is not from "fan 3" and its interpreted relationship to "fan 3" is not explained. (The	5.7	0.46 4.5	0.86 left-lateral 8.3 oblique	alluvial fans alluvial fan terraces Three Palms	dating 10Be exposure dating 10B and C14 U-series dating on pedogenic carbonate rinds luminesence		71-121 8.6 >= 3.49 +/- 0.92	Guns et al. (2022) Heermance et al. (2023) Munoz et al. (2016) Ataee (2019). Se alse
Blue Cut San Gorgonio Pass Mission Creek	CA CA	Hexie Mountains Millard Canyon Three Palms (Indio Hills) Indio Hills (Pushawalla	Alluvial fan deposits of six different ages have been dated and correlated across the fault. The slip rate after 71 ka appears to be slower than prior to that date. Alluvial fan terrace offsets summed over two fault strands The Three Palms fan is offset approximately 57 +/- 3 meters. U-series dating on pedogenic carbonate rinds collected at 25-100 cm depth within the fan deposit constrain the minimum depositional age to 3.49 +/- 0.92 ka, yielding a maximum slip rate of 16 +6.1/-3.8 mm/yr The proposed 640 +/- 80 m right-lateral offset of "fan 3" is not clearly explained or documented. The dated sample used to calculate the slip rate is not from "fan 3" and its interpreted relationship to "fan 3" is not explained. (The focus of the study was on luminescence dating techniques and alluvial fan ages at various locations in the	5.7	0.46 4.5	0.86 left-lateral 8.3 oblique 6 +6.1 right-lateral	alluvial fans alluvial fan terraces Three Palms alluvial fan	dating 10Be exposure dating 10B and C14 U-series dating on pedogenic carbonate rinds luminesence Be-10 surface		71-121 8.6 >= 3.49 +/- 0.92	Guns et al. (2022) Heermance et al. (2023) Munoz et al. (2016) Ataee (2019). Se alse
Blue Cut San Gorgonio Pass Mission Creek	CA CA	Hexie Mountains Millard Canyon Three Palms (Indio Hills) Indio Hills (Pushawalla	Alluvial fan deposits of six different ages have been dated and correlated across the fault. The slip rate after 71 ka appears to be slower than prior to that date. Alluvial fan terrace offsets summed over two fault strands The Three Palms fan is offset approximately 57 +/- 3 meters. U-series dating on pedogenic carbonate rinds collected at 25-100 cm depth within the fan deposit constrain the minimum depositional age to 3.49 +/- 0.92 ka, yielding a maximum slip rate of 16 +6.1/-3.8 mm/yr The proposed 640 +/- 80 m right-lateral offset of "fan 3" is not clearly explained or documented. The dated sample used to calculate the slip rate is not from "fan 3" and its interpreted relationship to "fan 3" is not explained. (The focus of the study was on luminescence dating techniques and alluvial fan ages at various locations in the	5.7	0.46 4.5	0.86 left-lateral 8.3 oblique 6 +6.1 right-lateral	alluvial fans alluvial fan terraces Three Palms alluvial fan "fan 3" paleochannels	dating 10Be exposure dating 10B and C14 U-series dating on pedogenic carbonate rinds luminesence Be-10 surface exposure ages		71-121 8.6 >= 3.49 +/- 0.92	Guns et al. (2022) Heermance et al. (2023) Munoz et al. (2016) Ataee (2019). Se als
Blue Cut San Gorgonio Pass Mission Creek	CA CA	Hexie Mountains Millard Canyon Three Palms (Indio Hills) Indio Hills (Pushawalla	ka appears to be faster than after that date. Alluvial fan deposits of six different ages have been dated and correlated across the fault. The slip rate after 71 ka appears to be slower than prior to that date. Alluvial fan terrace offsets summed over two fault strands The Three Palms fan is offset approximately 57 +/- 3 meters. U-series dating on pedogenic carbonate rinds collected at 25-100 cm depth within the fan deposit constrain the minimum depositional age to 3.49 +/- 0.92 ka, yielding a maximum slip rate of 16 +6.1/-3.8 mm/yr The proposed 640 +/- 80 m right-lateral offset of "fan 3" is not clearly explained or documented. The dated sample used to calculate the slip rate is not from "fan 3" and its interpreted relationship to "fan 3" is not explained. (The focus of the study was on luminescence dating techniques and alluvial fan ages at various locations in the Coachella Valley).	5.7	0.46 4.5	0.86 left-lateral 8.3 oblique 6 +6.1 right-lateral	alluvial fans alluvial fan terraces Three Palms alluvial fan "fan 3" paleochannels downstream from	dating 10Be exposure dating 10B and C14 U-series dating on pedogenic carbonate rinds luminesence Be-TU surface exposure ages and U-series		71-121 8.6 >= 3.49 +/- 0.92	Guns et al. (2022) Heermance et al. (2023) Munoz et al. (2016) Ataee (2019). Se alse
Blue Cut San Gorgonio Pass	CA CA	Hexie Mountains Millard Canyon Three Palms (Indio Hills) Indio Hills (Pushawalla Canyon)	ka appears to be faster than after that date. Alluvial fan deposits of six different ages have been dated and correlated across the fault. The slip rate after 71 ka appears to be slower than prior to that date. Alluvial fan terrace offsets summed over two fault strands The Three Palms fan is offset approximately 57 +/- 3 meters. U-series dating on pedogenic carbonate rinds collected at 25-100 cm depth within the fan deposit constrain the minimum depositional age to 3.49 +/- 0.92 ka, yielding a maximum slip rate of 16 +6.1/-3.8 mm/yr The proposed 640 +/- 80 m right-lateral offset of "fan 3" is not clearly explained or documented. The dated sample used to calculate the slip rate is not from "fan 3" and its interpreted relationship to "fan 3" is not explained. (The focus of the study was on luminescence dating techniques and alluvial fan ages at various locations in the Coachella Valley). Average slip rate of 21.6 +/- 2 mm/yr based on three paleochannels of Pushawalla canyon (downstream from fault)	5.7	0.46 4.5	0.86 left-lateral 8.3 oblique 6 +6.1 right-lateral	alluvial fans alluvial fan terraces Three Palms alluvial fan "fan 3" paleochannels downstream from fault, offset from	dating 10Be exposure dating 10B and C14 U-series dating on pedogenic carbonate rinds luminesence Be-10 surface exposure ages and U-series dates on		71-121 8.6 >= 3.49 +/- 0.92	Guns et al. (2022) Heermance et al. (2023) Munoz et al. (2016) Ataee (2019). Se also
Blue Cut San Gorgonio Pass Mission Creek	CA CA	Hexie Mountains Millard Canyon Three Palms (Indio Hills) Indio Hills (Pushawalla	ka appears to be faster than after that date. Alluvial fan deposits of six different ages have been dated and correlated across the fault. The slip rate after 71 ka appears to be slower than prior to that date. Alluvial fan terrace offsets summed over two fault strands The Three Palms fan is offset approximately 57 +/- 3 meters. U-series dating on pedogenic carbonate rinds collected at 25-100 cm depth within the fan deposit constrain the minimum depositional age to 3.49 +/- 0.92 ka, yielding a maximum slip rate of 16 +6.1/-3.8 mm/yr The proposed 640 +/- 80 m right-lateral offset of "fan 3" is not clearly explained or documented. The dated sample used to calculate the slip rate is not from "fan 3" and its interpreted relationship to "fan 3" is not explained. (The focus of the study was on luminescence dating techniques and alluvial fan ages at various locations in the Coachella Valley).	5.7	0.46 4.5 1	0.86 left-lateral 8.3 oblique 6 +6.1 right-lateral	alluvial fans alluvial fan terraces Three Palms alluvial fan "fan 3" paleochannels downstream from	dating 10Be exposure dating 10B and C14 U-series dating on pedogenic carbonate rinds luminesence Be-10 surface exposure ages and U-series dates on		71-121 8.6 >= 3.49 +/- 0.92 75.83+/-8.68	Guns et al. (2022) Heermance et al. (2023)

The SCEC Geologic Silp Rate Database Explorer

The SCEC Geologic Silp Rate Database Explorer currently consists of a set of promigistened sales where geologic estimates of fault silp rates have been estimated. To sarrolly browning and downloading the Silp Rate Database. The protection become provise a free destination of the Silp Rate Database. The Silp Rate Database can be georated based on fault or a terminary and the service of the Silp Rate Database. The Silp Rate Database can be destinated as a few analysis of the Silp Rate Database. The Complete 27 columns of metadata for all satiented sites can be downloaded (in .csv formal) with the "Download All Data" button. Rate to the user guide for more distination and usage internations.

Choose Dataset:


Silp Rate Silv (fault) site i

Calverage (north) | Web Crose

Concord (Galrid Orese) | Web

Search using Longitude/Latitude range. Region can be typed in, or drawn via click and drag. Basemap shown is "ESRI Terrain".

Unruh and Hitchcock (2009)

Search by fault name or site name. Here we show a search for fault name "Andreas" with the "JAWG Light" basemap.