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Feed-forward deep neural network: @
- GOAL: Compare grid-based Finite Difference Method(FDM) vs A single hidden layer with weights W and biases b The: Inverse-PINN objective:
mesh-free Physics-Informed Neural Networks(PINNs) on the elastic g ; @ Given p and limited surface observations, infer shear modulus
wave equation for: the forward prediction of displacement u(x,t) and v, 0) =@ Wy+b), wheret = (Wb @ 1) while predictng dsplacement
the inverse recovery of the shear modulus p(x) from spare surface . "y @ | L o "
data. The recursive definition We aim to minimize the interiror loss(residual) and learn the value
- Why PINNs?: FDM is the accuracy/speed baseline. PINNs are lo =Y, ‘ of 11, Physics Residual (used in both forward and inverse):
mesh-free, easy incorporation of physics + constraints, and competi- £ — (Pk(wkgk—l 1 bk) for 0 < k < L., Figure 2: Network diagram for a generic PINN with activations , input z
tive accuracy for the hard enforcement implementation. def fodf 4 d | y ,output and PDE /. Network connections shown with dashed lines R[u, U] (5’37 t) = p@ttU(:E, t) B 856(“(@ 8@““@7 t))
. Why Both?: Forward benchmarks set the accuracy/time baseline; in- ennes a reed-foward, deep neural Nnetwork: represent non-trainable parameters. hysics residual P \
verse stresses data assimilation and parameter recovery. N(y;0) =Wrlr 1+ bg spatial domain PINN architecture: Inverse(residula +data)
- Design knobs: Soft vs hard constraint enforcement; L-BFGS opti- PDEs as initial-boundary-value problems (IBVP): First we assume the solution to the IBVP is u(x,, t) ~ N(X,, t: 9)
mizer implementation ; hotspot-aware collocation(see how well the differential | _ temporal - .
method can learn an anomaly introduced in the equation for the for- operator Ll A =k(x,1), (%) cQx[0,T 4 domain and define the physics-informed neural network (PINN)
ward problem) ; u positivity/regularization(how well the method e _ o Bw A =g(x, 1), «(x,t) € 00 x |0,T], Ji=LINA —k
learns [ ). ouner o Fig. 2 shows that both’~ and A/ have trainable nework parameters than can
ary u(x O) — ug (X) x & () boundary data 9 S P
operator ’ \ initial condition(s) be learned by minimizing a mean squared error loss.

Verification: Learning PDEs, results for the forward and inverse problem

ID inverse problem: Inverting for Forward Problem for 1D elastic wave equation: Comparing FDM and LBFGS hard boundary enforcement solutions.
(a) Exact solution (b) PINN solution (c) error surface graph . . _
FDM implementation (amp=0.6) PINN implementation, with hard boundary enforcement for
N amp =0.6
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g B difference between PINN prediCtiOnS and Flgure 4 T(.)p_VIOeW graph for exact SOIUtlpn(Ieft) ’ tOp'VleW graph.for Figure S:Top_view graph for exact Solutipn(left) , top_view graph for PINN
JTRNNERES exact solution d) predicted p (dotted line) vs FDM solution(right). Manufactured wavefield with narrow Gaussian per- solution(right).
g 1.50 1 True p value(solid line) plot. turbation(yellow bump) . Color encodes displacement u(x,t).

Table 1: Comparison of FDM vs. PINN

PINN set-up and training
Step 1: Elastic Wave PDE: Step 4:Training the PINN Method Ly (rel) ~ MSE  Total time (s) Eval (s) Iterations

Generate rand pvalugteloss ST FDM (4=0) 565685 583E1L 856 856 3200 e
_ « Generate ranaom ti - PVT h' — . - ‘ - . .
p atfu(gj?t) B 093(/‘(51;) 990“(5’%0)» (x7 t) C (07 L) f (07 T]' collocation points. puilt in autograd. FDM (A =0.6) 353566 2.280F-13 456 5.6 12800 0

- —0.10 £

.——0.15

Resample interior [ Adam (A=0) (soft) ~ 3.131E-3  4.000E-6 %68 000092 6000
ointseachepochl | BPGS (A=0) (soft)  4404E-4  8.664E-8 209 000088 10
Adam (A =06) (soft) 86272  3.786E-3 325 0.00089 6000

PINN
Training

Initial and Boundary conditions:

\
- Update the net-

u(aj’o) = 2], O 3370) - UO(CU); 1 O’t) - U( th) =(,  workparameters | LBFGS (A=06) (soft) 5.279E-2 1417E3 196 000070 10
ot and adantive  Compute gracl Adem (A=06) (hard) 12234 T622E-3 565 000261 4000
Step 2: Hard enforced tial for u : (u(x)=0 via softplus) moment estima- tion using [-BFGS (A=0.6) (hard) 5.410E-5 1486E-3 138 0.00013 10 | |
tion (e.g. Adam backpropaga- "
uglr,t) = g(x,t) + Blz,t) Ny(z,t),  optimizer tior
warmup, followed Table 1: This table benchmark | timi bi f hf |
_ _ _ _ by L-BFGS). able 1. Ihistable benchmarks every solver-optimizer combina- Figure 6: Error surface graph for exact vs PINN solu-
B(O, t) = B(L, t) = O, g(l’, 0) = UO(I>, atg(gf, O) — UO(I>. Y ) tion across five metrics, for the forward problem tion(fig 5).

Step 3: Define the mean-squared error |oss - Q:interior collocation set; (x_i, t_i) sampled by Sobol/LHS

each epoch.
- [_obs: observation points for inverse; y_k are measured dis-
placements.
Lewa(0) = L / [R[ue , 1] (x, t)] 2 dx dt - N_Q, N_obs, N_x: counts of interior, observations, and spa- SU m mary’ FUture WOrk & Refe rences
|Q| Q tial grid for p-reqularizer.
- A_pde, \_data, A_p: loss weights (tuned). - In general, PINNs do not outperform traditional numerical methods for forward problems, HOWEVER they may offer im-

+ Autodiff provides 0_t, 9_x and u_tt, (u u_x)_x. proved and/or complimentary methods for inverse problems, and higher dimensional problems, allowing seamless integra-
Inverse Problem: tion of observational data, , particularly for applications requiring frequent point-wise evaluations where the instant query

Forward Problem:

L:pde

capabilities of PINNs surpass those of the FDM.
1 Nob ) i . Future work:
Nt Z ug(Tk, th) — yk) + Au zzu (,Ucbz = Sensitivity analysis of model outputs to model inputs, see how PINNs perform with real-world data.
k=1 he » Extend methods to 2D/3D elastic wave problems to evaluate computational feasibility and accuracy at scale.
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*for inverse problems, known data is required.




