

Motivation

- GOAL: Compare grid-based Finite Difference Method(FDM) vs mesh-free Physics-Informed Neural Networks(PINNs) on the elastic wave equation for: the forward prediction of displacement u(x,t) and the inverse recovery of the shear modulus $\mu(x)$ from spare surface data.
- Why PINNs?: FDM is the accuracy/speed baseline. PINNs are mesh-free, easy incorporation of physics + constraints, and competitive accuracy for the hard enforcement implementation.
- Why Both?: Forward benchmarks set the accuracy/time baseline; inverse stresses data assimilation and parameter recovery.
- Design knobs: Soft vs hard constraint enforcement; L-BFGS optimizer implementation; hotspot-aware collocation(see how well the method can learn an anomaly introduced in the equation for the forward problem); μ positivity/regularization(how well the method learns μ).

(b) PINN solution

Physics-informed neural networks (PINNs)

Feed-forward deep neural network:

A single hidden layer with weights W and biases b

$$\ell(\mathbf{y}; \theta) = \varphi(W\mathbf{y} + b), \text{ where } \theta = (W, b)$$

The recursive definition

 $\ell_0 = \mathbf{y},$

operator

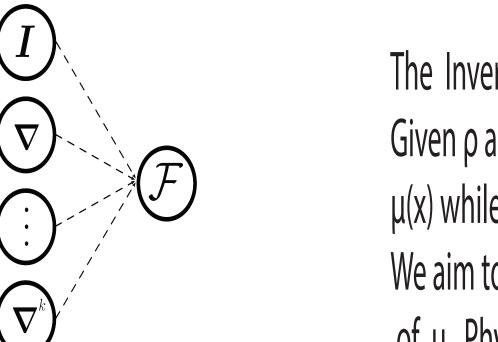
operator

$$\ell_k = \varphi_k(W_k \ell_{k-1} + b_k) \quad \text{for } 0 < k < L,$$

 $\mathcal{N}(\mathbf{y}; \theta) = W_L \ell_{L-1} + b_L$

PDEs as initial-boundary-value problems (IBVP):

Figure 2: Network diagram for a generic PINN with activations arphi, input x, output u and PDE \mathcal{F} . Network connections shown with dashed lines defines a feed-foward, deep neural network: represent non-trainable parameters.



The Inverse-PINN objective: Given p and limited surface observations, infer shear modulus $\mu(x)$ while predicting displacement u(x,t)We aim to minimize the interiror loss(residual) and learn the value of μ. Physics Residual (used in both forward and inverse):

$$\mathcal{R}[u,\mu](x,t) = \rho \,\partial_{tt} u(x,t) - \partial_x (\mu(x) \,\partial_x u(x,t))$$

PINN architecture:

First we assume the solution to the IBVP is $u(\mathbf{x},t)pprox\mathcal{N}(\mathbf{x},t; heta)$ and define the physics-informed neural network (PINN):

$$\mathcal{F} := \mathcal{L}[\mathcal{N}; \lambda] - \mathbf{k}$$

Fig. 2 shows that both ${\mathcal F}$ and ${\mathcal N}$ have trainable nework parameters than can be learned by minimizing a mean squared error loss.

Verification: Learning PDEs, results for the forward and inverse problem

 $\mathbf{u}(\mathbf{x},0) = \mathbf{u}_0(\mathbf{x})$ $\mathbf{x} \in \Omega$

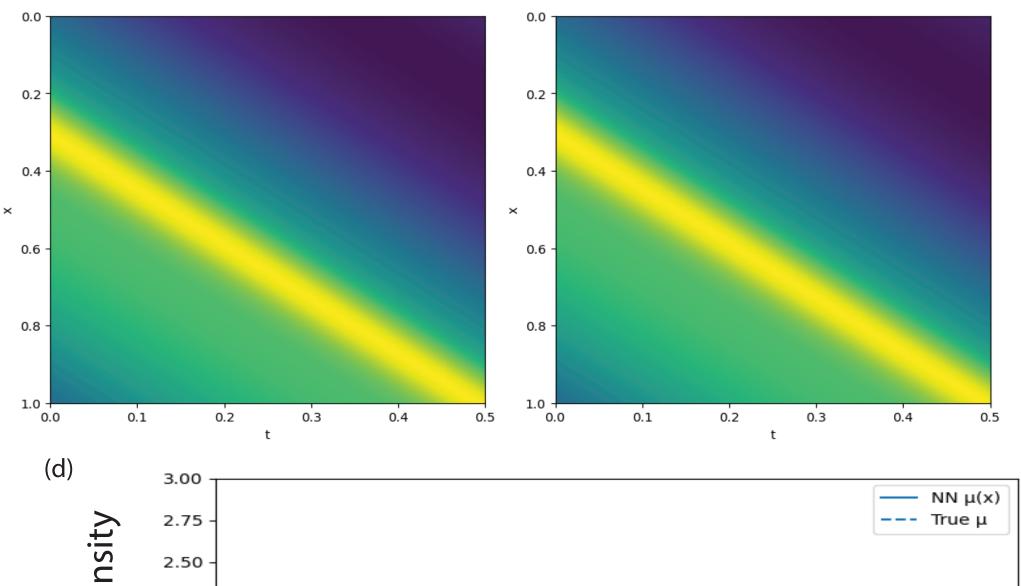
 $\mathcal{L}\left[\mathbf{u};\lambda\right] = \mathbf{k}(\mathbf{x},t), \quad (\mathbf{x},t) \in \Omega \times [0,T],$

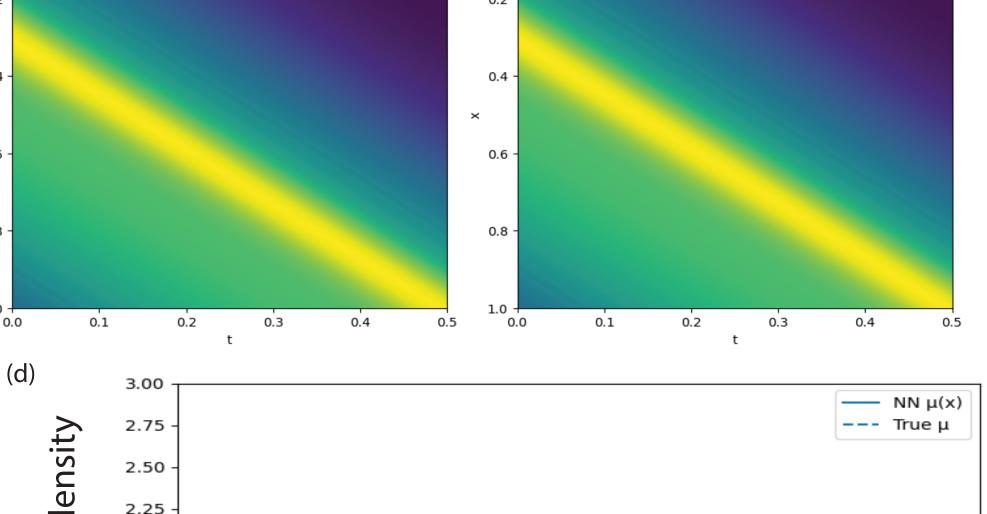
 $\mathcal{B}\left[\mathbf{u};\lambda
ight]=\mathbf{g}(\mathbf{x},t), \ \ (\mathbf{x},t)\in\partial\Omega imes\left[0,T
ight],$

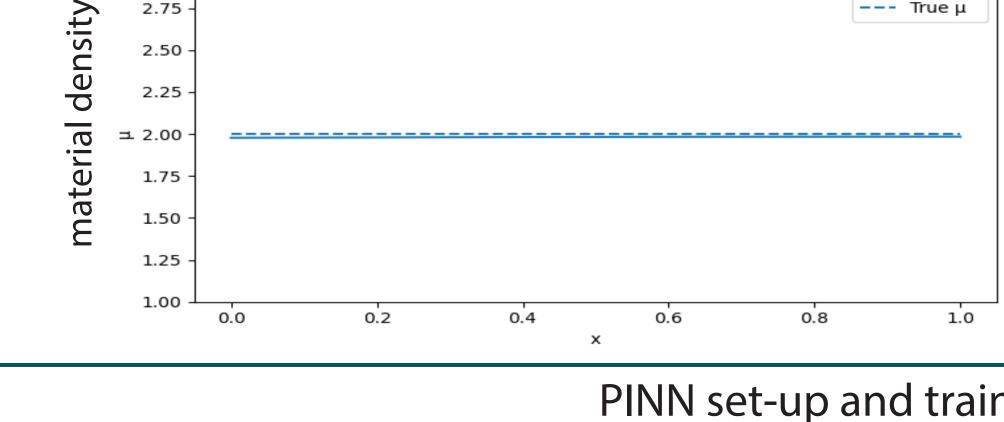
FDM implementation (amp=0.6)

ID inverse problem: Inverting for μ

(a) Exact solution







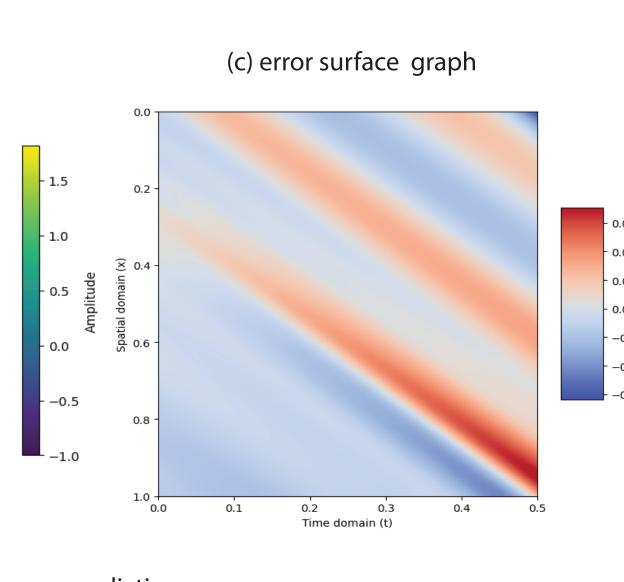
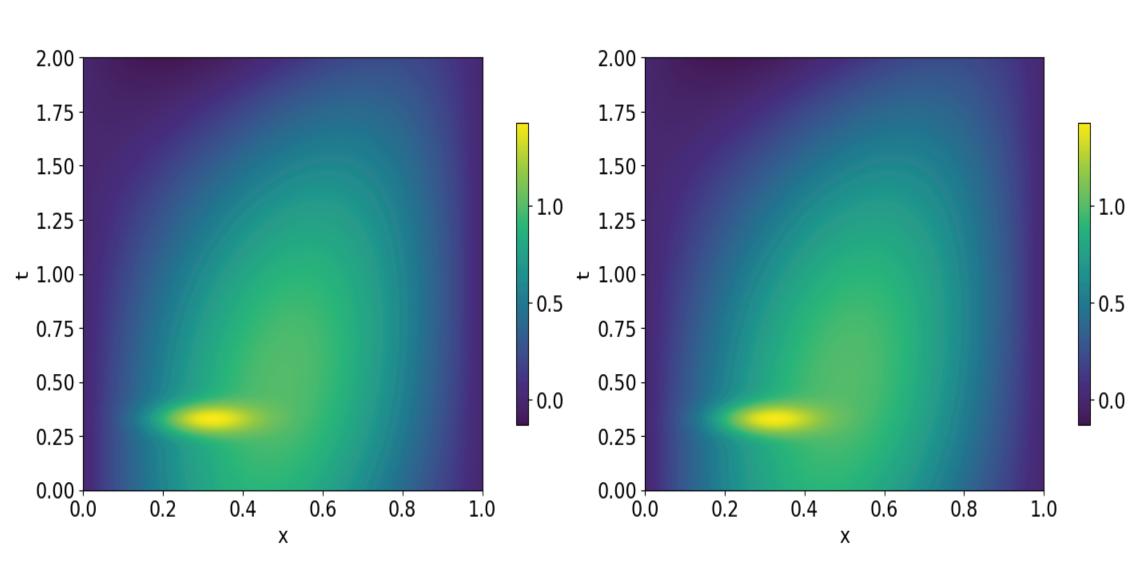
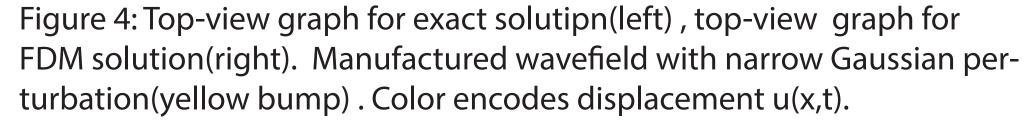


Figure 3: The plots show: a) Top-view of exact solution b)Top-view of PINN solution c)Signed difference between PINN predictions and exact solution d) predicted µ (dotted line) vs True μ value(solid line) plot.

Forward Problem for 1D elastic wave equation: Comparing FDM and LBFGS hard boundary enforcement solutions.





PINN implementation, with hard boundary enforcement for amp = 0.6

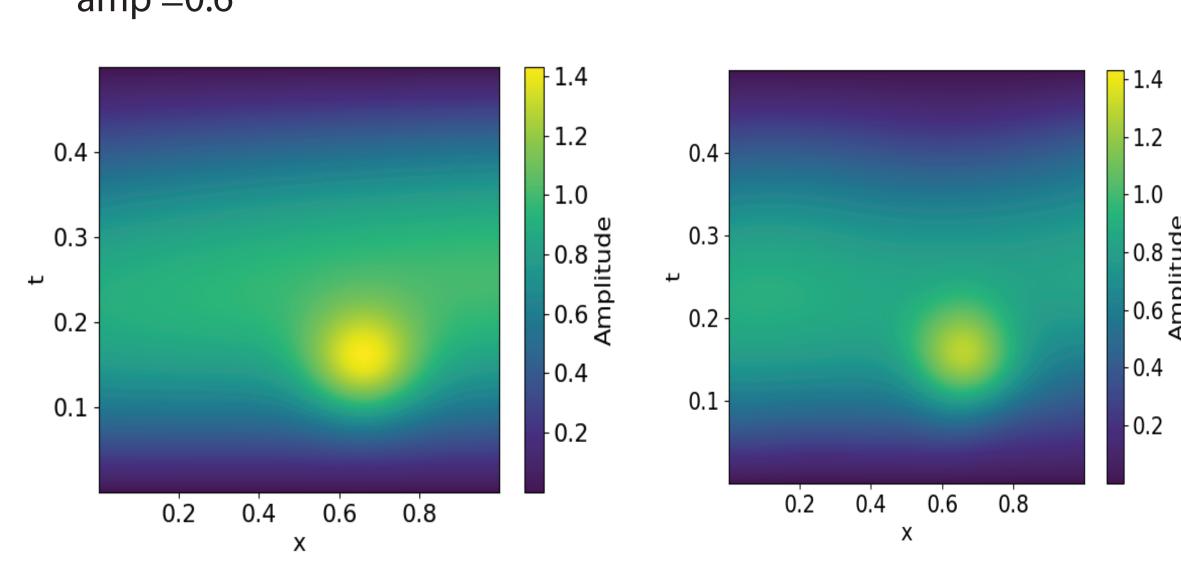
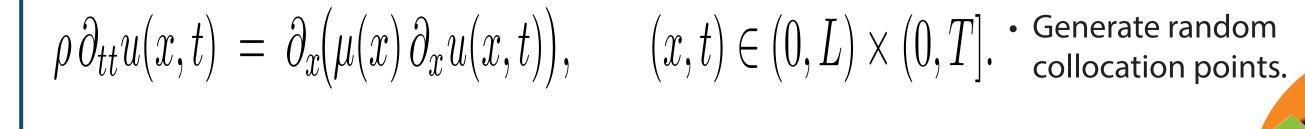


Figure 5: Top-view graph for exact solution(left), top-view graph for PINN solution(right).

PINN set-up and training

Step 1: Elastic Wave PDE:

Step 4: Training the PINN



Initial and Boundary conditions:

$$u(x,0) = u_0(x),$$
 $\partial_t u(x,0) = v_0(x),$ $u(0,t) = u(L,t) = 0$

Step 2: Hard enforced tial for $u : (\mu(x) \ge 0 \text{ via softplus})$

$$u_{\theta}(x,t) = g(x,t) + B(x,t)N_{\theta}(x,t),$$

$$B(0,t) = B(L,t) = 0, \ g(x,0) = u_0(x), \ \partial_t g(x,0) = v_0(x).$$

Step 3: Define the mean-squared error loss

Forward Problem:

$$\mathcal{L}_{\text{fwd}}(\theta) = \underbrace{\frac{1}{|\Omega|} \int_{\Omega} \left[\mathcal{R}[u_{\theta}, \mu](x, t) \right]^{2} dx dt}_{\text{Condense}}$$

using the loss gradient and adaptive moment estimation (e.g. Adam optimizer warmup, followed

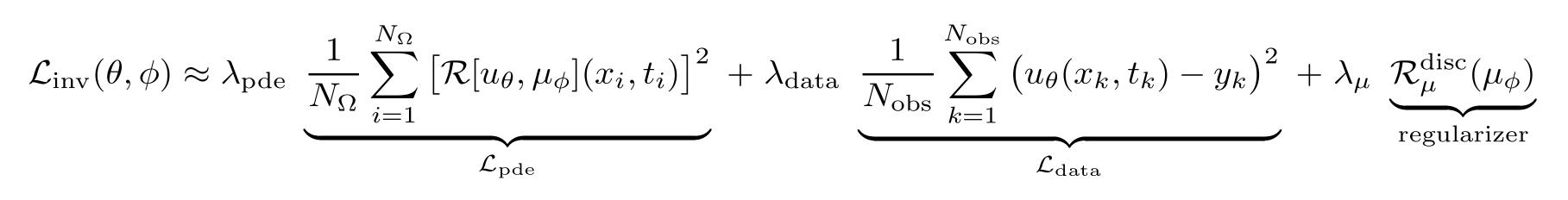
 Update the network parameters by L-BFGS).

• Evaluate loss function - PyTorch's built in autograd. Resample interior points each epoch PINN **Training**

Compute gradient of loss function using backpropagation

- Ω: interior collocation set; (x_i, t_i) sampled by Sobol/LHS each epoch.
- Γ_obs: observation points for inverse; y_k are measured displacements.
- N_Ω, N_obs, N_x: counts of interior, observations, and spatial grid for μ-regularizer.
- λ _pde, λ _data, λ _ μ : loss weights (tuned).
- Autodiff provides ∂_t , ∂_x and u_t , $(\mu u_x)_x$.

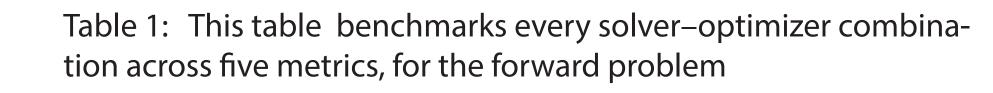
Inverse Problem:



*for inverse problems, known data is required.

Table 1: Comparison of FDM vs. PINN

Method	L_2 (rel)	MSE	Total time (s)	Eval (s)	Iterations
$\overline{\text{FDM }(A=0)}$	5.656E-5	5.823E-11	8.56	8.56	3200
FDM (A = 0.6)	3.535E-6	2.280E-13	45.6	45.6	12800
Adam (A = 0) (soft)	3.131E-3	4.000E-6	268	0.00092	6000
L-BFGS $(A = 0)$ (soft)	4.404E-4	8.664E-8	209	0.00088	10
Adam (A = 0.6) (soft)	8.627E-2	3.786E-3	325	0.00089	6000
L-BFGS $(A = 0.6)$ (soft)	5.279E-2	1.417E-3	196	0.00070	10
Adam $(A = 0.6)$ (hard)	1.223E-4	7.622E-3	565	0.00261	4000
L-BFGS $(A = 0.6)$ (hard)	5.410E-5	1.486E-3	138	0.00013	10



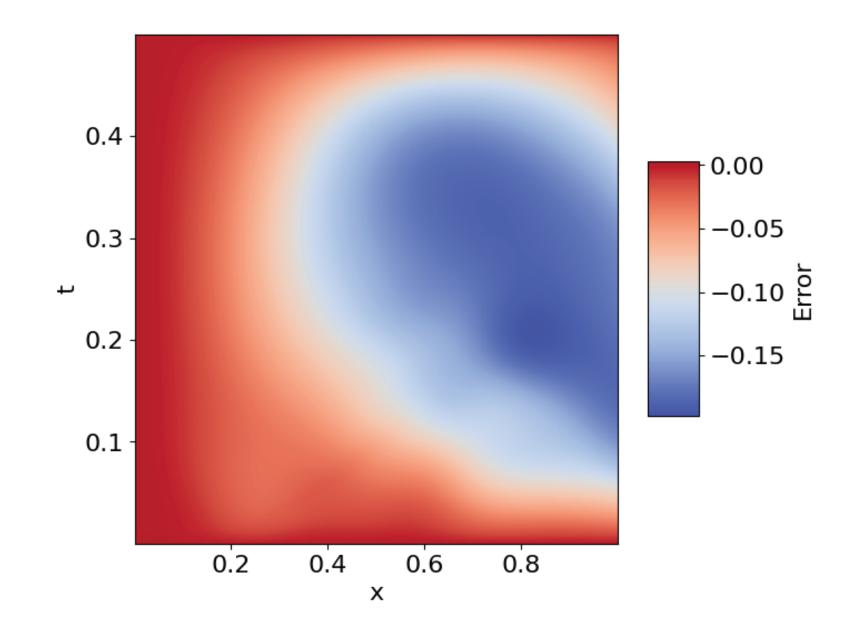


Figure 6: Error surface graph for exact vs PINN solution(fig 5).

Summary, Future work & References

- In general, PINNs do not outperform traditional numerical methods for forward problems, HOWEVER they may offer improved and/or complimentary methods for inverse problems, and higher dimensional problems, allowing seamless integration of observational data, , particularly for applications requiring frequent point-wise evaluations where the instant query capabilities of PINNs surpass those of the FDM.
- Future work:
- Sensitivity analysis of model outputs to model inputs, see how PINNs perform with real-world data.
- Extend methods to 2D/3D elastic wave problems to evaluate computational feasibility and accuracy at scale.

References:

- C.ody Rucker, ``Physics-Informed Deep Learning of Rate-and-state Fault Friction,", Journal of Geophysical Research: Solid Earth 2022
- Svetislav Savović et.al ,"A Comparative Study of the Explicit Finite Difference Method and Physics-Informed Neural Networks for Solving the Burgers' Equation", Axioms 2023
- Rasht, "Physics Informed Neural Networks (PINNs) for Wave Propagation and Full Waveform Inversions".