
Motivation Physics-informed neural networks (PINNs)

Veri�cation: Learning PDEs, results for the forward and inverse problem

Summary, Future work & References

PINN architecture:

• GOAL:  Compare grid-based Finite Di�erence Method(FDM) vs 
mesh-free Physics-Informed Neural Networks(PINNs) on the elastic 
wave equation for: the forward prediction of displacement u(x,t) and 
the inverse recovery of the shear modulus μ(x) from spare surface 
data. 

• Why PINNs?:   FDM is the accuracy/speed baseline. PINNs are 
mesh-free,  easy incorporation of physics + constraints, and competi-
tive accuracy for the hard enforcement implementation.

• Why Both?:  Forward benchmarks set the accuracy/time baseline; in-
verse stresses data assimilation and parameter recovery.

• Design knobs:  Soft vs hard constraint enforcement; L-BFGS opti-
mizer implementation ; hotspot-aware collocation(see how well the 
method can learn an anomaly introduced in the equation for the for-
ward problem) ; μ positivity/regularization(how well the method 
learns μ ).

Figure 3: The plots show : a) Top-view of exact 
solution b)Top-view of PINN solution c)Signed 
di�erence between PINN predictions and 
exact solution d)  predicted μ (dotted line) vs 
True μ value(solid line) plot.

Figure 2: Network diagram for a generic PINN with activations    , input     
, output     and PDE     .    Network connections shown with dashed lines 
represent non-trainable parameters. 

Feed-forward deep neural network:

A single hidden layer with weights   W and biases  b  

The recursive de�nition

de�nes a feed-foward, deep neural network: 

PDEs as initial-boundary-value problems (IBVP):

di�erential 
operator

bound-
ary 
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spatial domain

temporal 
domain

boundary data Fig. 2 shows that both      and       have trainable nework parameters than can 
be learned by minimizing a mean squared error loss.

First we assume the solution to the IBVP is
and de�ne the physics-informed neural network (PINN):

ID inverse problem: Inverting for μ 

Step 3: De�ne the mean-squared error loss

Forward Problem:

Step 1: Elastic Wave PDE: 

Forward Problem for 1D elastic wave equation: Comparing FDM and LBFGS hard boundary enforcement solutions. 

PINN 
Training

• Generate random 
collocation points.

• Evaluate loss func-
tion - PyTorch's 
built in autograd. 
Resample interior 
points each epoch

• Compute gradi-
ent of loss func-
tion using 
backpropaga-
tion 

• Update the net-
work parameters 
using the loss gra-
dient and adaptive 
moment estima-
tion (e.g. Adam 
optimizer 
warmup, followed 
by L-BFGS).

Step 4: Training the PINN

FDM implementation (amp=0.6)
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Step 2: Hard enforced tial for u : (μ(x)≥0 via softplus)

PINN implementation, with hard boundary enforcement for
 amp =0.6

*for inverse problems, known data is required. 

Figure 4: Top-view graph for exact solutipn(left) , top-view  graph for 
FDM solution(right).  Manufactured wave�eld with narrow Gaussian per-
turbation(yellow bump) . Color encodes displacement u(x,t).

Figure 5: Top-view graph for exact solutipn(left) , top-view  graph for PINN  
solution(right). 

Figure 6: Error surface graph for exact vs PINN solu-
tion(�g 5). 

Table 1:   This table  benchmarks every solver–optimizer combina-
tion across �ve metrics, for the forward problem

•  In general, PINNs do not outperform traditional numerical methods for forward problems, HOWEVER they may o�er im-
proved and/or complimentary methods for inverse problems, and higher dimensional problems, allowing seamless integra-
tion of observational data, , particularly for applications requiring frequent point-wise evaluations where the instant query 
capabilities of PINNs surpass those of the FDM.

•  Future work:
▪ Sensitivity analysis of model outputs to model inputs, see how PINNs perform with real-world data.
▪ Extend methods to 2D/3D elastic wave problems to evaluate computational feasibility and accuracy at scale.
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PINN set-up and training 
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(a)  Exact solution (b)  PINN solution (c) error surface  graph   

(d)  

The  Inverse-PINN objective:
Given ρ and limited surface observations, infer shear  modulus 
μ(x) while predicting displacement u(x,t)
We aim to minimize the interiror loss(residual)  and learn the value
 of  μ.  Physics Residual (used in both forward and inverse): 

physics residual Inverse(residula +data)

Initial and Boundary conditions: 

Inverse Problem:

• Ω: interior collocation set; (x_i, t_i) sampled by Sobol/LHS 
each epoch.

• Γ_obs: observation points for inverse; y_k are measured dis-
placements.

• N_Ω, N_obs, N_x: counts of interior, observations, and spa-
tial grid for μ-regularizer.

• λ_pde, λ_data, λ_μ: loss weights (tuned).
• Autodi� provides ∂_t, ∂_x and u_tt, (μ u_x)_x.

Table 1: Comparison of FDM vs. PINN

Method L2 (rel) MSE Total time (s) Eval (s) Iterations

FDM (A = 0) 5.656E-5 5.823E-11 8.56 8.56 3200
FDM (A = 0.6) 3.535E-6 2.280E-13 45.6 45.6 12800
Adam (A = 0) (soft) 3.131E-3 4.000E-6 268 0.00092 6000
L-BFGS (A = 0) (soft) 4.404E-4 8.664E-8 209 0.00088 10
Adam (A = 0.6) (soft) 8.627E-2 3.786E-3 325 0.00089 6000
L-BFGS (A = 0.6) (soft) 5.279E-2 1.417E-3 196 0.00070 10
Adam (A = 0.6) (hard) 1.223E-4 7.622E-3 565 0.00261 4000
L-BFGS (A = 0.6) (hard) 5.410E-5 1.486E-3 138 0.00013 10
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