
Figure 1: Sample slip distribution and tsunami propagation results used to train the neural 
network. (a) Stochastic slip model for a Mw 8.0 event along the predetermined fault 
geometry. Each subfault is colored according to the amount of slip. (b) Maximum 
amplitude and arrival times based on a numerical simulation for the same Mw 8.0 event. 
Arrival times are designated by the grey contours every 10 minutes. The output region is 
shaded according to maximum wave height. Grey triangles are located at each of the 20 
coastal points used in training the neural network. The Japan Trench is indicated by a blue 
line in both figures. 

Accurate and timely tsunami warnings are critical for mitigating loss of life 
and property. Traditional deterministic simulations of tsunami waveforms 
using numerical methods such as finite element models can provide detailed 
predictions but are computationally intensive, making them less suitable for 
rapid response. For operational warning systems, however, complete 
waveform details are often unnecessary—what is essential are reliable 
estimates of maximum coastal wave heights and arrival times.

This study presents a hybrid modeling framework that leverages deep learning 
to significantly reduce prediction time while maintaining accuracy. We first 
generate training data using stochastic slip distributions for Mw 7.5–9.0 
earthquakes along the Japan Trench, with corresponding maximum wave 
heights and arrival times computed via high-fidelity numerical simulations. A 
convolutional neural network enhanced with transformer blocks is then trained 
to learn the mapping from earthquake slip distributions to coastal tsunami 
metrics, capturing both local spatial patterns and long-range dependencies.

Once trained, the model can produce near-instant predictions, enabling 
probabilistic tsunami hazard assessment and rapid damage estimation. This 
approach demonstrates the potential of AI-driven methods to complement 
traditional physics-based modeling, accelerating the delivery of actionable 
tsunami warning information and improving disaster preparedness.
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Input slip distributions involved a fixed geometry (strike of 198°, dip of 15°, 
250 subfaults) along a fault plane in the Japan Trench. This geometry was 
derived from the USGS finite fault model of the 2011 Tohoku earthquake [4]. 
3350 stochastic slip models were generated with target magnitudes from Mw 
7.5-9.0. The actual magnitude for each simulated earthquake varied from the 
target magnitude slightly, resulting in the distribution shown in Figure 2.

The model was trained for 200 epochs using a batch size of 64, dropout value 
of 0.1, and optimizing with Adam at a learning rate of 1e-4. Mean squared 
error defined the loss function for the training data (65% of the dataset) and 
validation data (20% of the dataset), excluding NaN values that may have been 
output by the tsunami propagation simulation.

Once trained, the model’s near-instant evaluation capacity presents a 
significant reduction in time needed for  early warning predictions, compared 
the computational time of each numerical simulation (~1-6 minutes). 

The best model was evaluated on an independent test dataset using 25% of 
the original observations. Pearson’s correlation coefficient was calculated to 
quantify the error across the testing dataset for each output variable, yielding 
Rtime = 0.8470  for the arrival time and Rheight = 0.7945 for the maximum wave 
amplitude. These results suggest that while the model is capable of 
generating accurate predictions, further training is necessary prior to 
increasing the complexity of the problem.

This work highlights the utility of machine learning in geophysical settings, 
while underscoring the need for balancing data availability and model 
complexity. Complex convolutional neural networks are often trained 
effectively with hundreds of thousands of observations. In this case, the 
time-intensive data simulation process hindered our ability to maximize the 
neural network’s performance. Additional investigations may also consider 
increasing the number of predicted outputs to generate more specific and 
thorough tsunami warnings.

This study aims to improve tsunami early warning systems by training a 
convolutional neural network (CNN) to produce quick, accurate predictions of 
maximum tsunami wave height and arrival time at specific locations along 
Japan’s coast. Previous studies have used a variety of input parameters (e.g. 
geodetic observations) within convolutional neural networks to improve the 
state of tsunami forecasting [1, 2]. Capitalizing on the growing capabilities for 
carrying out rapid earthquake source inversions, our model uses the slip 
across a fault plane to generate predictions [3]. By directly training the model 
with seismic source parameters, this approach has the potential to accelerate 
tsunami warning predictions for affected coastal populations.

Figure 2: Distribution of earthquake magnitudes in the training and test datasets. Test 
data comprised of 25% of the entire dataset. This project did not evaluate the model’s 
extrapolation capacity for events outside the range of magnitudes during training.

Figure 3: (a) Convolutional neural network architecture. To 
downsample the data,  1D convolution is applied with a kernel size 
of 5, stride of 4, and padding of 2 prior to the transformer layer. All 
other convolution layers use kernels of size 1. A linear interpolation 
is performed after the data passes through all other layers to output 
exactly 20 points. ReLu was used as an activation function. (b) 
Training and validation loss curve over 200 training epochs. 1. Min-Jong Song, Yong-Sik Cho, 2024. Early warning for maximum tsunami heights and arrival time based on 
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Figure 4: Example outputs from the trained model. The upper charts correspond to 
the Mw 8.0 event depicted in Figure 1. Distance along the coast is measured from the 
southernmost location included in the analysis.

Each slip distribution was used to create an Okada model of seafloor 
deformation and subsequently simulate tsunami propagation using 
depth-averaged shallow water equations with 3 levels of Adaptive Mesh 
Refinement [5]. The simulation calculated the maximum wave height and 
arrival time across a regular fixed grid with a spatial resolution of 1/12°. 

Input data for the neural network consists of the latitude, longitude, and depth 
(km) of the subfault centerpoint as well as the slip (m) and rake for each of 
the 250 subfaults. The output data contained the maximum wave height and 
arrival time for 20 fixed grid points along the coast of Japan ( Figure 1b). 

Our model modifies the convolutional neural network structure introduced by 
Gong & Wang et al in the development of RuptureNet2D, a CNN designed to 
predict earthquake dynamic rupture parameters [6]. In particular, a convolution 
layer and linear interpolation layer were added to downsample the input data 
(information from 250 subfaults) to produce predictions for 20 specific 
locations along the coastline. The original surrogate model employs 
1-dimensional convolution layers and transformer blocks with multi-head 
self-attention, making this CNN structure well-equipped to identify the 
non-local trends present throughout our dataset. 

Neural Network Architecture

(a) (b)

(a) (b)

Mw 8.0 

Mw 8.25  Mw 8.75 

0.500 h 

0.167 h 


