
Toward a Validated Multi-scale Seismic Velocity Model 
for the San Andreas Fault System in the Western US

Te-Yang Yeh and Yehuda Ben-Zion
Department of Earth Sciences and Statewide California Earthquake Center, 

University of Southern California, Los Angeles

Error
(ei)

Weight 
(wi)

FASE 1

FASN 1

FASZ 1

VERE 1/2

VERN 1/2

VERZ 1/2

AERE 1/2

AERN 1/2

AERZ 1/2

Error metrics
● Errors are measured in the form of absolute 

log10 ratios in both frequency and time 
domains between 0.1-0.5 Hz.

● We consider:
FAS: Fourier amplitude spectrum
VER: Velocity waveform envelope RMS
AER: Acceleration waveform envelope RMS.

● Each error (ei) is averaged across all available 
events at each station.

● Event-averaged errors are weighted to form a 
combined error : 

5. Toward the Statewide Model

1km depth 1km depth

(ii) Data-informed Refinement for CCA

1km depth

(i) Merging CCA
Entire CCA merged 

(top 25 km)

Refined CCA

(iii) Merging CVM-H with Refinement
(iv) CCA+CVM-H+CVM-S 
Merged with Refinement

Starting model CANVAS

1km depth

CV
M

-H
 b

ou
nd

ar
yEntire CVM-H merged 

(top 25 km)

1km depth

CV
M

-H
 b

ou
nd

ar
yRefined CVM-H

CCA

CVM-H

CVM-S
Simulation domain (d

ashed)

● Background model: CANVAS (Doody et al. 
2023)

● Merging order: (1) CCA (2) CVM-H (3) CVM-S
● 17 Mw 4.2-4.7 events, 150 stations.
● Average error value reduced from 0.481 

(CANVAS) to 0.330 (updated model).  
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● Follow through the developed workflow in two other subregions 
and develop the statewide updated background model:

Northern California and Bay Area
- San Francisco Bay Velocity Model 
- Furlong et al (2024) 

... etc

Southern California
- CVM-S4.26
- CVM-H
- Berg et al (2021)
- Fang et al (2022) 

... etc

● Validation against an independent dataset not used for model 
merging

● With the validated statewide background model, incorporate local 
high-resolution models
- Merged and validated at a higher frequency (1+Hz)
- Optimize shallow structures using low-velocity taper

● Merging San Joaquin Basin (Shaw & Plesch, 2015) into the updated background model for central 
California

● Evaluating cosine taper windowing (Ajala & Persaud, 2021) and dictionary learning (DL) (Zhang & 
Ben-Zion, 2024) methods

● Two merging methods deliver similar performance for the San Joaquin basin, with DL providing 
higher spatial resolution and slightly lower averaged error
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4. Example from Southern California (Including the Santa Maria Basin)
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● Incorporate Santa Maria Basin (from CVM-H) into CVM-S4.26 (assumed background model)
● Small testing simulation domain for validation with 
● Testing two merging methods -> DL method outperforms the windowing method
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2. Example From Central California - Step 1

1. Introduction
● We develop a workflow for multi-scale seismic velocity models of the San Andreas fault system, aimed at 

supporting broadband ground motion simulations.
● Models combine large-scale crustal structures with localized high-resolution basins and features that strongly 

influence wave propagation.
● Each regional domain follows a two-step process: (1) assemble the best-available regional model from 

existing studies, and (2) merge higher-resolution models using methods such as cosine-taper windowing and 
dictionary learning.

● Candidate models are validated through 3D wave propagation simulations of moderate earthquakes, 
comparing observed and synthetic waveforms with goodness-of-fit metrics to guide iterative refinement.

  Workflow

Step 1: Creating Best Background Model for the Region

Step 2: Including Local High-Resolution Models
Merging: windowing or dictionary learning followed by validation and updates 

3. Example From Central California - Step 2


