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Minkyung Son'(kersti@kigam.re.kr), Kevin Mayeda?, Jorge Roman-Nieves?, Tae Seok Oh', and Chang Soo Cho’
'Korea Institute of Geoscience and Mineral Resources, Daejeon, South Korea, “Air Force Technical Applications Center, FL, USA

7 5
W, &
24 »
Wy g

Abstract Dataset: ML = 2.5 Seismic Events in the YSKP (1996-2025) Method: Coda Calibration Tool (CCT)
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often hindered by path and site effects, simplifled assumptions, and limited e | | ;
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bandwidth. We apply the Coda Calibration Tool (CCT) to 1,266 seismic events with : shueee | |
ML = 2.45 that occurred in the Yellow Sea and Korean Peninsula (YSKP) region over Frequency Binning  Ji N <—
the past 30 years. The CCT, which leverages the empirical relationship between &N N v Gen. Envelopes Gererte Plots B ST Bt
coda envelope characteristics and path/site effects, enables the estimation of v oy ; I
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source parameters from the resulting moment-rate spectra. We use broadband 20 x| \ et R T — CCT on GitHub
sps data from 28 local and 7 regional stations to construct coda envelopes and 36°N 36°N LA
employ apparent stress estimates from four Mw 4.9+ events, including the 2016 W e Coda Calibration Tool (CCT; Barno, 2017): Java-based implementation with a
Gyeongju and 2017 Pohang mainshocks, to obtain stable site corrections in the 1-5 v RIS 2 graphical interface, providing a consistent workflow from coda envelope
Hz range as reference events. The CCT results include 1,066 Mw estimates, with the - el ¥ KIGAM v construction to source parameter estimation.
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smallest being Mw 2.2, which we compare to Mw from time-domain moment ol e iy > vl foro, [T e Stable: Coda waves are less sensitive to rupture directivity, providing a robust
inversion and to catalogued ML values. We present a source sca!lng relatlonshlp s = i e e e —— o . . basis for empirical calibration (Mayeda & Walter, 1996).
using apparent stress, Mw, and corner frequency, and examine the spatial e Transportable: Path and site effects are calibrated with reference events and then
distribution of appqrent s.tress.. We also describe distinct spectral characteristics of e 1,277 seismic events (ML = 2.5, 1996-2025) from the KIGAM catalog applied to other events (Mayeda et al., 2003; Morasca et al., 2005).
man-made events, including mine collapses and nuclear tests, and confirm that the e Broadband waveforms from 28 KIGAM and 7 IRIS stations, including 4 arrays near the DMZ
CCT's dlstanqe—baged path correction assumption and its energy-based source e East and north components of velocity, -350 s to +1150 s relative to origin time ®® & > ® &
parameter estimation work well for the YSKP region. e Envelopes, computed with the “Tool > Create Envelopes” function in the Coda Calibration Tool p ey e WaldoninWen -
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Results: CCT's Path Correction Effective in the YSKP (a) 36 calibration events (8 ref + 28 val) — stable parameters.
1,266 M. 2 2.5 events analyzed with CCT — 1,066 source parameter estimates (M, f, E,, My, 0a). (b) 138 additional TDMT events — Mw (CCT) vs. Mw(TDMT) matches well. “
Among them, 174 events with independent Mw (TDMT; Dreger, 2003) were compared with Mw (CCT): (c) Final results: fc, M,, and o for 1,066 events.
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(d) Depth > 0 km events: o, increases with Mw; no clear depth dependence when p is constant. e S Ty BT g e s I —— ] T—
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M.-Mw relationship: Previous studies often assumed a linear scaling (Sheen et al.,

2018), though Shelly et al. (2021) noted its limitations and potential bias. Discussion: Spectral Features and o Regional Variation
e Our results follow the curved trend predicted by theory:
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