

Jonatan Glehman ¹, Yehuda Bock ¹, Barry Hirshorn ¹, Allen Nance ¹, Jonathan R. Weiss ², Stuart Weinstein ² and Dorian Golriz ³

¹ Institute of Geophysics and Planetary Physics, Scripps Institution of Oceanography, University of California San Diego, La Jolla, CA, USA ² Pacific Tsunami Warning Center, National Oceanic and Atmospheric Administration, National Weather Service, Honolulu, HI, USA ³ Soreq Nuclear Research Center, Yavne, Israel Correspondence to: Jonatan Glehman (jglehman@ucsd.edu)

Group A

1. Motivation:

Seismogeodesy

Traditionally, tsunami early warning relies on moment magnitude (M_w) and broadband P-wave moment magnitude (M_{wp}) estimates based on regional to teleseismic body waves beyond epicentral distances of ~5°.

- The associated M_w estimation time is inadequate for coastal populations residing closer to big earthquakes $(M_w > 8)$.
- Combining GNSS and collocated strong-motion data:
- Unclipped broadband velocity and displacement waveforms with a seismic trigger that are sensitive to the entire spectrum of ground motions (seismogeodetic)^{1,2}.
- Previously developed approach³ Golriz2023 restricted to P-waves propagation suitable for thrust earthquakes but not for other mechanisms.

Extend a physics-based seismogeodetic approach for moment magnitude estimation (M_{wq}) developed for thrust earthquakes to other fault mechanisms

2. Theory

Double-Couple Point Source in a Homogeneous Elastic Medium

Intermediate and far field terms of the radial component of the horizontal motion (h) adopted from 4,5:

$$u_{\rm hr}(\mathbf{r},\mathbf{t}) = \frac{1}{4\pi\rho\alpha^2r^2} \mathbf{A}^{\rm IP} M_0 \left(\mathbf{t} - \frac{\mathbf{r}}{\alpha}\right) + \frac{1}{4\pi\rho\beta^2r^2} \mathbf{A}^{\rm IS} M_0 \left(\mathbf{t} - \frac{\mathbf{r}}{\beta}\right)$$

$$+\frac{1}{4\pi\rho\alpha^{3}r}A^{FP}\dot{M}_{0}\left(t-\frac{r}{\alpha}\right)+\frac{1}{4\pi\rho\beta^{3}r}A^{FS}\dot{M}_{0}\left(t-\frac{r}{\beta}\right),$$

We approximate \dot{M}_0 as a backward difference:

$$\dot{M}_0 = \frac{M_0(t) - M_0(t-1)}{dt}$$

$$M_0(t) = \left| \frac{u_{\rm hr}(r,t) + \frac{C_{\rm far}}{dt} \cdot M_0(t-1)}{C_{\rm int} + \frac{C_{\rm far}}{dt}} \right|$$

Where:

$$C_{far} = \frac{1}{4\pi\rho\alpha^{3}r}A^{FP} + \frac{1}{4\pi\rho\beta^{3}r}A^{FS}$$
 $C_{int} = \frac{1}{4\pi\rho\alpha^{2}r^{2}}A^{IP} + \frac{1}{4\pi\rho\beta^{2}r^{2}}A^{IS}$

 $A^{IP} = 4 \sin 2\theta \cos \phi \hat{r} - 2 \cos 2\theta \cos \phi \theta$

 $\mathbf{A}^{IS} = -3\sin 2\theta \cos \phi \, \hat{\mathbf{r}} + 3\cos 2\theta \cos \phi \, \overline{\theta}$

 $A^{FP} = \sin 2\theta \cos \phi \vec{r}$

 $A^{FS} = \cos 2\theta \cos \phi \overline{\theta}$.

We assume no radiation pattern corrections for real time implementation:

$$(A^{IP} = A^{IS} = A^{FP} = A^{FS} = 1)$$

3. Data Analysis

Name/Region	M_w	Fault mechanism	Origin time (UTC)	Longitudo (E°)	e Latitude (N°)	Depth (km)	Strike/Dip/rake
Ridgecrest, California	7.0	Strike-slip	6 July 2019 03:19:53	-117.600	35.800	8.0	321°/81°/180°
El Mayor-Cucapah, Mexico	7.2	Strike-slip	4 April 2010 22:40:42	-115.295	32.286	10.0	313°/88°/-174°
Pazarcik, Turkey	7.8	Strike-slip	6 February 2023 01:17:34	37.014	37.226	10.0	51°/70°/-4°
Elbistan, Turkey	7.7	Strike-slip	6 February 2023 10:24:48	37.196	38.011	7.4	264°/46°/-9°
Sand Point, Alaska	7.6	Strike-slip	19 October 2020 20:54:38	-159.626	54.602	27.4	350°/49°/176°
Sand Point, Alaska	7.3	Strike-slip	16 July 2025 20:37:39	-160.472	54.549	20.1	344°/57°/157°
Cape Mendocino, California	7.0	Strike-slip	5 December 2024 18:44:21	-125.022	40.374	10.0	280°/83°/-175°
Chiapas, Mexico	8.2	Normal	8 September 2017 04:49:19	-93.899	15.022	47.4	318°/78°/-93°
Rat Islands, Alaska	7.9	Normal	23 June 2014 20:53:09	178.735	51.849	109.0	207°/27°/-13°
(b) Thrust earthquakes stud	died by	Golriz et al. (20	23)				
Tokachi-oki, Japan	8.3	Thrust	25 September 2003. 19:50:07	144.079	41.780	42.0	250°/11°/132°
Maule, Chile	8.8	Thrust	27 February 2010 06:34:11	-72.898	-36.122	22.9	19°/18°/116°
Tohoku-Oki, Japan	9.1	Thrust	11 March 2011 05:46:24	142.861	38.104	23.7	203°/10°/88°
Iquique, Chile	8.1	Thrust	01 April 2014 23:46:47	-70.769	-19.610	25.0	355°/15°/106°
Illapel, Chile	8.3	Thrust	16 September 2015 22:54:32	-71.674	-31.573	22.4	007°/19°/109°
Kilauea, Hawaii	6.9	Thrust	04 May 2018 22:32:54	-155.000	19.318	5.8	238°/19°/106°
Simeonof, Alaska	7.8	Thrust	22 July 2020 06:12:44	-158.522	55.030	28.0	243°/17°/92°
Chignik, Alaska	8.2	Thrust	29 July 2021 06:15:49	-157.888	55.364	35.0	238°/10°/88°

3. Results

I. New Method with and without Radiation Pattern (RP) Correction vs. Previous Method (Golriz2023)

- $\rightarrow M_{wa}$ with an accuracy of ±0.2 units, for most of the strike-slip events, without RP corrections.
- → RP corrections offer substantial benefits for normal and thrust faulting events. Golriz2023 performs better.

Seismogeodetic magnitude (M_{wa}) estimates for (left): strike-slip, normal, and (right): thrust fault earthquakes. Marker shapes denote fault type (strike-slip = circles, normal = triangles, thrust = squares). Colors indicate methods. The solid line marks the 1:1 relation with reported Mw. and dashed lines show ±0.2 IQR.

II. Spatial and Temporal Performance – No RP Corrections Suitable for Real Time Implementation

- → Larger discrepancies observed for events with sparse near-source coverage/complex rupture behavior.
- \rightarrow Most events stabilize within 100–150 seconds despite having a low coverage (\leq 5 stations).

Seismogeodetic magnitude (M_{wq}) estimates without RP corrections for seven strike-slip and two normal earthquakes (Table). (Left): Station-level estimates, with red indicating overestimates and blue underestimates. (Right): Time evolution of event magnitudes; gray = individual stations, red = event medians (±IQR), black dashed lines = GCMT magnitudes.

III. Stand-Alone GNSS with an Interpolated Coseismic Window **Supplement the Collocated Stations**

- $\rightarrow M_{wq}$ within ±0.2 units of the collocated estimates in most cases
- → The estimates tend to be slightly lower than collocated station-based

4. Conclusion - Unified Approach to Earthquake and **Tsunami Early Warning**

- New algorithm performs well for strikeslip events without RP corrections.
- Largely underestimates normal and thrust earthquakes if RP corrections not applied.
- Golriz2023 suits thrust events but overestimates strike-slip/normal.
- Obtaining radiation patterns in real time is challenging, Golriz2023 preferred for nonstrike-slip earthquakes.
- integrated workflow for rapid magnitude estimation, which leverages tectonic context (Slab2 geometry) to inform model selection.
- Offers a viable and efficient solution for operational use, in both earthquake and tsunami early warning systems.

GNSS and

accelerometer

- ¹ Smyth & Wu 2007; Mechanical Systems and Signal Processing , 21(2), 706-723
- ² Bock et al 2011; BSSA, *101*(6), 2904-2925
- ³ Golriz et al 2023; JGR, 128(1), e2022JB025555
- Madariaga et al. 2019; Pure and Applied Geophysics, 176(3), 983-1001
- ⁵ Aki and Richards (2002); Quantitative seismology.