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Spatial data collected from the field after earthquakes is heterogeneous and 
requires extensive manual post-processing before publication. The field 
observation dataset from the 2014 Napa earthquake took five years to publish 
due to paper-based collection, while data from the 2019 Ridgecrest earthquake 
took one year using form-based mobile apps. However, significant amounts of 
data were still received in non-standardized formats, creating opportunities for 
automated parsing to further reduce post processing times.
Parsing and standardizing observation data involves manually interpreting 
various terminologies, unit conversions, and free-text field notes across multiple 
input types. Scientists at the USGS and CGS undertook this manual process for 
the fault rupture observation datasets from Napa and Ridgecrest earthquakes. 
Using these datasets, we trained a machine learning (ML) model to parse and 
extract data from free-text fields, and classify it into structured fields. 
Our model achieved an average accuracy of 88% in extracting structured data 
from free-text notes for the Napa and Ridgecrest datasets combined. This 
approach demonstrates potential to reduce earthquake field data processing 
from years to months. Future work will expand beyond fault rupture free-text 
parsing to handle other hazard types and additional data formats.

We began by consolidating post-earthquake fault rupture observation datasets 
from the 2014 Napa and 2019 Ridgecrest earthquakes into a unified dataset. 
The schema of this unified dataset is the most current schema that grew from 
incremental changes to what kinds of information was valuable enough to track. 
By comparing the fields between these datasets and the current schema, we 
systematically mapped corresponding fields with identical meanings. To 
preserve the original information from the Napa and Ridgecrest datasets that 
didn't fit in the current schema, we extended the current schema with new 
columns marked by underscore prefixes. This mapping strategy ensured 
comprehensive data retention while creating a larger, more robust training 
dataset. Our field mappings were the result of a collaborative effort involving 
experts Luke Blair (USGS), Kate Thomas (CGS), and Tim Dawson (CGS).

We used standard machine learning validation techniques to assess how 
accurately the system could automate the conversion of descriptive field text 
into structured data fields, replicating the structured data entry process that 
investigators typically perform manually.
We evaluated model performance using an 80/20 random train-test split of the 
consolidated earthquake field observations dataset. Our machine learning 
approach achieved an overall average accuracy of 88% across all predicted 
geological fields.

This project demonstrates that machine learning can significantly reduce the 
time it takes to pre-process data, thus reducing the time it takes to make the 
data available for use. The ML model in this project can be trained on other 
datasets to ensure that it yields more accurate predictions. The techniques used 
to create this ML model can be modified and used to predict data from 
liquefaction observations, not just fault rupture observations. Future work will 
focus on implementing direct numeric prediction for continuous measurements 
(e.g., precise slip values in centimeters) to preserve full measurement precision 
rather than using categorical bins.

After a significant earthquake takes place, vast amounts of field observation 
data are generated to document ground deformation. While these data aids in 
providing insights for future earthquake responses, its dissemination is delayed 
due to manual post-processing procedures.

This project addressed a key bottleneck in observation data processing: the 
manual parsing of free-text field notes. Investigators employ several methods to 
record observations, including spreadsheets, PDFs, KMZ files, and ESRI 
shapefiles, with information organized using varied approaches. By targeting 
free-text fields, where investigators document observations in their own 
terminology (e.g. vertical slip vs. uplift vs. vertical displacement), we addressed 
the most challenging aspect of data standardization, as descriptive language, 
units, use of acronyms, and technical terms vary among investigators due to the 
short timeframe available to record perishable data. Using machine learning 
techniques trained on the Napa and Ridgecrest observation datasets, we 
developed a semi-automated system to parse these free-text fields and extract 
structured information about fault ruptures.

Figure 1: Tectonic setting of the Ridgecrest earthquake sequence in southern 
California. Red box shows earthquake locations; gray lines show Quaternary 
active faults from QFFD. (from Jobe et al., 2020)

Figure 2: The columns of the Napa and Ridgecrest field observation datasets as 
well as the columns of the current schema. The columns of these datasets were 
mapped to the columns of the current schema with the same meaning.
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With validated field mappings in hand, we developed a Python script to 
transform the datasets into our unified dataset. The pipeline loaded the Napa 
and Ridgecrest datasets into Pandas DataFrames - chosen for their ability to 
handle mixed data types and seamless integration with machine learning 
libraries. Using our field mappings as a guide, the Python script populated 
corresponding schema fields, producing a consolidated dataset of 2,352 
observations. This automated approach eliminated manual data transformation 
errors while ensuring consistent formatting across all observations.

Finally, we developed supervised learning models to extract geological 
characteristics from free-text field descriptions. The system converted 
unstructured field notes into numerical features using TF-IDF (Term 
Frequency-Inverse Document Frequency) vectorization, then trained 
classification models to predict specific geological attributes like fault orientation, 
slip sense, and rupture expression. To facilitate rapid model development, we 
created artificial categorical fields by binning continuous measurements (e.g., 
converting precise slip values in centimeters to "Small/Medium/Large" 
categories). However, this approach sacrificed measurement precision for 
implementation speed.

Figure 3: Accuracy of ML model predictions for each category

The model exhibited varying performance across different geological 
parameters. Binary classification tasks showed strong performance when 
accounting for class imbalance. For 'Gouge Observed' and 'Striations Observed', 
the model successfully identified  the rare ‘Yes’ and ‘No’ cases despite the large 
number of ‘Unknown’ values in the training data. 
One challenge was the prevalence of 'Unknown' classifications across most 
target fields. For instance, the 'Slip Magnitude' field, despite achieving the 
highest accuracy (97.2%), was dominated by ‘Unknown’ values. 
These results demonstrate the model's effectiveness for automated processing 
of earthquake field data, particularly.. The high accuracy rates suggest potential 
for real-time field data standardization and quality control applications.
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