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Abstract Results

Thrust and reverse fault scarps that form during large earthquakes often feature Planar Fault Model Variable Fault Dip Model

complex patterns of distributed folding, fracturing, and uplift in surface fault ruptures | (3) Weak Sediment, 20° Fault - Pressure Ridge Scarp (a) Weak Sediment (1 MPa)

that can vary significantly along-strike. We aim to evaluate the influence of fault Perspective View Map View Along-Strike View Perspective View
parameters (slip, dip) and sediment strength mechanics on the patterns of ground | "
surface deformation. We produced 80 3D distinct element method (DEM) models
across 4 case studies: 1, planar faults with constant fault dip (209, 409, 60°); 2, variable
fault dip along-strike from 20° to 709; 3, variable depth of the fault tip; 4, amount of
obliquity in fault slip. Across all of these cases, we tested homogeneous and
heterogeneous sediment strengths by modifying the cohesion of the contact bonds
using the parallel-bond contact model. We tested homogeneous sediment strengths
including weak (1 MPa), moderate (3 MPa), and strong (5 MPa) sediment as well as
heterogeneous sediment conditions with randomized heterogeneities along-strike
and a cohesive top unit above loosely consolidated sediment.

Our results show that the most influential factor in determining the overall scarp type
is the near-surface fault dip. Shallow faults produce pressure ridge scarps while steep | (c) Weak Sediment, 60° Fault - Monoclinal Scarp
faults produce monoclinal or simple scarps (consistent with Chiama et al., 2023, 2025). -'
In parallel, the sediment strength determines the localization of slip in the near surface
and differentiates the formation of monoclinal and simple scarps. The models with
fault dip variability have the most diversity in scarp types present, while the
randomized heterogeneity in sediment strength and depth of the fault tip produces
the variability in surface deformation characteristics (scarp height, deformation zone
width, scarp dip) within the given scarp type. Thus, the fault dip and along-strike
variability in sediment strengths both contribute to significant along-strike variability
in fault scarp morphology. We propose that insights from these 3D DEM models can
help inform local site assessments for seismic hazards and aid in the community efforts
for Probabilistic Fault Displacement Hazard Assessments (PFDHA).
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