
• Aseismic creep influences fault loading, stress transfer, and earthquake hazard, but is difficult to 
differentiate from earthquakes in the geologic record.

• The northern Calaveras Fault creeps and generates earthquakes, so its surface expression 
should record both processes and offers a natural laboratory for determining if landscape or 
geologic signals can be differentiated.

• We begin with highly detailed geomorphic and geologic mapping to differentiate the landscape 
and lithologic evidence for displacement and test for correlation of mineralogy with geomorphic 
expression and slip behavior of different strands.

1.Why Study Creep?
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4. Geomorphic Indicators of Faulting
The Calaveras Fault in the Quaternary Fault and Fold Database has not been updated since the widespread availability 
of LiDAR (Bryant and Cluett, 1999; NorCal Lidar, 2008).
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Figure 3: Detailed geomorphic indicator map of the 
central Calaveras Fault generated from 1 - 0.5 m 
LiDAR (NorCal Lidar., 2008, USGS. 2021). Geomorphic 
characterisation modified from Witter et al. (2003) and 
Adam et al. (2025).
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• The density of geomorphic indicators increase around the Morgan Hill Area.

• Variations in the sharpness of geomorphic indicators may reflect differences in 
timing, with sharper features indicating more recent or localized activity.

• Faults were mapped based on the alignment, density, and confidence of 
geomorphic indicators.
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Figure 4: Example of the (a) geomorphic indicators 
in the LiDAR used to map the (b) fault traces. 

Location shown in Fig. 3.

5. Lithology - Indicator Relationships

Percentage (%)

Metamorphic

Melange and 

Chaotic Units Plutonic

Sedimentary

Seds (W
eakly

Lithified) Serpentine

Unconsolidated

Seds
Volcanic

100806040200

G
eo

m
or

ph
ic

 In
di

ca
to

rs

G
eo

m
or

ph
ic

 In
di

ca
to

rs

Mechanical Geology Groups

Metamorphic
Melange and Chaotic Units
Plutonic
Sedimentary Rocks

Seds (Weakly Lithified)

Serpentine
Unconsolidated Seds
Volcanic

Chi-squared test of independence indicates a signficant association 
between geomorphic indicator type and geology mechanical group 
(χ² = 550.31, df = 196, p = 0.00).
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Figure 8: Distribution of the geology types across a subset of geomorphic indicator 
types, illustrating that the occurrence of indicators varies with underlying geology.

• Plutonic Rocks account for 2% of the total study area and only host linear 
valleys and deflected channels.

Figure 9: Standardized residuals from the chi-squared test of independence 
showing which geomorphic indicators from the subset shown in Fig.8 are over- or 
under-represented within each mechanical geology group.

• Lithified Sediments account 
for 60 % of the total study 
area and host a wide variety 
of geomorphic indicators.

• Long linear ponds (where 
pond length is 3x larger than 
the pond width) are 
over-represented in the 
serpentine and 
under-represented in the 
Sedimentary Rock (Fig. 9).

▪ Abundant in the south and 
south central area of the 
Calaveras Fault where the 
creep rate is higher.

0 200 400 m

b)

Internal fabric of Serpentine 

(Jsp) bending into the fault gouge

Gradational 
contact Gouge

Brecciated 
Fault Rocks

a)

Figure 6: (a) Field photo of a serpentine 
outcrop with fault gouge exposed at the 
waterline. (b) Schematic illustration showing 
how the internal fabric of the serpentine 
bends into the gouge zone, highlighting 
localized deformation.
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6. Gouge Characterization at Coyote Reservoir

Figure 7: (a) Field photo of highly weathered Franciscan 
Sandstone with fault gouge exposed at the waterline. (b) 
Schematic illustration showing the relatively sharp boundary 
between the Franciscan Sandstone and gouge zone.

Figure 5: Geologic map of Coyote Lake modified 
from Witter et al. (2003) and Graymer et al. (2006).
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• A and B are shutter ridges 
▪ A has ~ 1.4 - 1.6 km apparent offset 

(A-A’)
▪ B has ~ 0.8 - 1.4 km apparent offset 

(B-B’)

• Fault gouge appears to manifest 
differently between the serpentinite 
(Fig. 6) and sandstone (Fig. 7)
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Figure 1: Map of the San Francisco Bay 
Area highlighting the exposure of ultramafic 
rocks (yellow polygons from 12 county 
maps, Graymer et al., 2006) compared to 
recent observations of fault creep 
(McFarland et al., 2023). 

Figure 2:  Creep rates along Bay Area faults, smoothed and 
summed from resampled data. Sources include creep meters, 
InSAR, and theodolite arrays (e.g., Titus et al., 2005; Li et al., 
2023; McFarland et al., 2023).

2. Study Area
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• Creep is particularly common in the San Francisco Bay 
Area where the San Andreas Fault System distributes 
slip across several sub-parallel fault strands (Fig. 1).

• Increasing slip deficit observed in the northern Bay 
Area (Fig 2).

• We focus on the Calaveras Fault which is both rapidly 
creeping (Fig. 1) and known to produce large (≥M6) 
earthquakes in the last century.
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Looking for LiDAR!

3. Questions to Products
How does creep vs. 
rupture differ in the 

landscape?

How does local 
geology influence  
deformation style?

Map geomorphic 
indicators of faulting 

across strike

Characterize gouge 
zones

Update Q Fault 
Database for the 
Calaveras Fault

Mineralogical and 
microstructural 

similarities between 
lithologies 

Determine 
lithology - indicator 

relationships

Determine
 creep rate - indicator 
relationships across 

strike

Lithologic controls 
on deformation 

styles

Framework: 
creep vs rupture 
in the landscape

Mineralogical and 
microstructural 

similarities across 
creep rate

SAF+SG+CF+GF
SAF+SG+CF+GF smoothed
Calaveras
Calaveras - smoothed
Hayward
Hayward - smoothed
total slip rate

7. Future Work
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Download

• Update Quaternary Fault and Fold Database for the Calaveras Fault.
• Remove geomorphic indicators that aren’t correlated with a fault strand 

and re-test the correlation between geomorphic indicators and lithology - 
does the geology ability to create clay influence certain indicators? 

• Test the correlation between geomorphic indicators and creep rate along 
strike.

• XRD and Raman spectroscopy on gouge samples to determine how 
mineralogy and micrtostructures change with local lithology and across 
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