The Role of Plasticity on the Frictional Strength of Calcite Gouge with Increasing Normal

Stress

1 UNIVERSITY
OF MINNESOTA

TY:OF:CRISMO SILVE

Sophia H. Wright¹, Kristina K. Okamoto¹, Otis Wickenhaeuser², Harison S. Weisman¹, Amanda M. Dillman¹, Lars N. Hansen¹

¹University of Minnesota - Twin Cities, ²University of California - Santa Cruz

Introduction

Calcite is a common crustal mineral present in fault zones. Experiments indicate that the friction of calcite gouge decreases with increasing normal stress.

We hypothesize that this decrease is due to a change in partitioning of deformation mechanisms (dilation vs. intragranular plastic deformation vs.

fracturing). To analyze the role of plastic deformation, we quantify twin density which is known to be a function of stress and strain in rocks (Rowe and Rutter, 1990; Rybacki, 2013). In addition, we quantify twin orientation to better understand the role of shear on twin formation.

Friction Experiment Details

- L-block direct shear in a triaxial apparatus at room temperature.
- Normal stress = 10–150 MPa
- Displacement rate = 0.1–3.0 µm/s
- Non-sheared samples: pressurized at 70 MPa

Twin Density and Orientation Scales with Normal Stress

Non-Sheared Samples: scattered orientations

Starting Material

A)

90°

180°

0 30 60°

Sheared Samples: twins show alignment with σ₁

10 MPa

18 MPa

50

90°

90°

90°

90°

180°

0 30 60°

180°

0 30 60°

180°

0 30 60°

180°

0 30 60°

180°

180°

0 30 60°

180°

180°

180°

180°

180°

180°

180°

180°

180°

180°

180°

180°

180°

180°

180°

180°

180°

180°

180°

180°

180°

180°

180°

180°

180°

180°

180°

180°

180°

180°

180°

180°

180°

180°

180°

180°

180°

180°

180°

180°

180°

180°

180°

180°

180°

180°

180°

180°

180°

180°

180°

180°

180°

180°

180°

180°

180°

180°

180°

180°

180°

180°

180°

180°

180°

180°

180°

180°

180°

180°

180°

180°

180°

180°

180°

180°

180°

180°

180°

180°

180°

180°

180°

180°

180°

180°

180°

180°

180°

180°

180°

180°

180°

180°

180°

180°

180°

180°

180°

180°

180°

180°

180°

180°

180°

180°

180°

180°

180°

180°

180°

180°

180°

180°

180°

180°

180°

180°

180°

180°

180°

180°

180°

180°

180°

180°

180°

180°

180°

180°

180°

180°

180°

180°

180°

180°

180°

180°

180°

180°

180°

180°

180°

180°

180°

180°

180°

180°

180°

180°

180°

180°

180°

180°

180°

180°

180°

180°

180°

180°

180°

180°

180°

180°

180°

180°

180°

180°

180°

180°

180°

180°

180°

180°

180°

180°

180°

180°

180°

180°

180°

180°

180°

180°

180°

180°

180°

180°

180°

180°

180°

180°

180°

180°

180°

180°

180°

180°

180°

180°

180°

180°

180°

180°

180°

180°

180°

180°

180°

180°

180°

180°

180°

180°

180°

180°

180°

180°

180°

180°

180°

180°

180°

180°

180°

180°

180°

180°

180°

180°

180°

180°

180°

180°

180°

180°

180°

180°

180°

180°

180°

180°

180°

180°

180°

180°

180°

180°

180°

180°

180°

180°

180°

180°

180°

180°

180°

180°

180°

180°

180°

180°

180°

180°

180°

180°

180°

180°

180°

180°

180°

180°

180°

180°

180°

180°

180°

180°

180°

180°

180°

180°

180°

180°

180°

180°

180°

180°

180°

180°

180°

180°

180°

180°

180°

180°

180°

1

0 30 60

50 MPa

Two orientation peaks indicate complex twin development

Full Sample Images - Bright field reflected light

Data Collection Methodology

 10 photomicrographs per sample using bright field reflected light.

18 MPa (top) and 50 MPa (bottom): Grains with twins marked and labeled for data collection.

Interpretation and Conclusion

- Number of grains with twins increases with increasing normal stress.
- Shear promotes the formation and alignment of twins, and the absence of shear results in dispersed orientations and lower twin densities.
- → Twins accommodate frictional deformation!
- Plastic deformation is accommodating more shear deformation at higher stresses

Broader Significance

Quantifying how plasticity contributes to frictional strength in gouge provides a basis for scaling laboratory friction experiments to natural fault behavior.

Future Work

Separate the roles of twinning, grain size reduction, and other mechanics in accommodating stress by evaluating how modified twin density affects gouge friction.